
UML-Glossary 1

UML-Glossary

Preamble
The content of this document has been a part of the handbook Project Management with UML
and Enterprise Architect for Version 9, ISBN-13:978-3-9502692-1-5. Releasing Enterprise Architect
11, this book has been revised completely. To keep the new version compact, we decided to
release the UML-Glossary as pdf-download.

We also decided to change the title: Compendium of Enterprise Architect from SparxSystems,
ISBN 978-3-9503784-1-2. The German version Kompendium zu Enterprise Architect von
SparxSystems, ISBN 13 978-3-9503784-0-5 is also available at SparxSystems.

The new books are still intended as procedure documentation for the training UML with
Enterprise Architect, but may be used for self-study too.

The handbooks have been extended with further chapters:

 Team Collaboration – multiple users for one model

 Transparent versioning for service oriented architectures

 Colors of Enterprise Architect

 Element Discussions

 Model Mail

 Comprehensive Documentation: optimized Model-Structure

Ordering information and information about actual versions of the handbook can be found at
SparxSystems.

For the sake of readability were omitted gender-neutral language. Of course the information and
explanations addressed in this book to people of both sexes.

This documentation has been compiled and checked with great care. Unfortunately, however, it
cannot be assumed that errors herein do not exist. The author therefore assumes no
responsibility or liability for inaccurate entries. The included screenshots have been taken from
Enterprise Architect 11.1, build 1113 in most instances. Using other builds, your screens may be
different.

Copyright
© 2014 Sparxsystems Software GmbH Vienna. All rights reserved. No part of this document may
be electronically modified, published or distributed without the express written permission of the
publisher, SparxSystems Software GmbH. The content is exclusively available for on-line access or
download for read-only purpose.

http://www.sparxsystems.eu/trainings0/
http://www.sparxsystems.eu/trainings0/
http://www.sparxsystems.eu/resources/ea-training-book/?L=0%3Ftx_

2 UML-Glossary

The Authors

Ing. Dietmar Steinpichler is a qualified engineer who operated his own
real-time systems development company. His previous engagement
was for a telecom as business analyst and designer. His key
competencies are programming language development in CTI, pattern
recognition and abstraction algorithms. As technical project leader, his
team handled many major projects with UML modeling tools and
distributed architecture.

Since 2007, Mr. Steinpichler acts across Europe as trainer and
consultant for Sparxsystems Software GmbH with focus on quality
assurance, project processes and requirements management.

Email: dietmar.steinpichler@sparxsystems.eu

Dr. Horst Kargl is engaged in object oriented modeling and
programming since 1998. Before joining SparxSystems he was a
teaching scientific assistant at the Technical University of Vienna,
involved in several research projects with focus on e-learning,
semantic web and model driven software development. His study for
a Phd was concerned with automatic integration of modeling
languages.

Already acting as a freelancer for SparxSystems during his study, he
joined SparxSystems Europe in September 2008 as an employee,
focused on software architecture, code generation and customization
of Enterprise Architect.

Email: horst.kargl@sparxsystems.eu

mailto:dietmar.steinpichler@sparxsystems.eu
mailto:horst.kargl@sparxsystems.eu

UML-Glossary 3

Contents
UML-Glossary... 1

Preamble .. 1

Copyright ... 1

The Authors ... 2

Contents .. 3

Introduction to UML .. 5

Documentation ... 5
Advantages of UML .. 5
UML Standard .. 5

UML Extensions in Enterprise Architect .. 6
Historical Development of UML .. 6
Diagram Implementation ... 9

Fundamentals of Behavioral Modeling .. 10
Use Case Diagram .. 11

Actors ... 11
Use Case .. 12
System (System Boundary) .. 12
Relationships ... 12
Use Case Relationships ... 13
Descriptions and Notes ... 16
Graphical Elements .. 16
Example .. 17
Chapter Review ... 18

Activity Diagram .. 19
Activities ... 19
The Token-Concept for Activity-Diagrams ... 19
Connections ... 20
Junctions (Decision and Fork=Parallelization) .. 21
Merge... 21
Synchronization (Join) ... 22
Composition of Activity Diagrams ... 22
Responsibility Zones (Swimlanes) .. 23
Asynchronous Processes ... 24
Interrupt Region.. 24
Graphical Elements .. 25
Example .. 28
Chapter Review ... 30

State Machine Diagram ... 31
States ... 32
Transitions .. 32
Symbols ... 32
Example .. 33
Chapter Review ... 34

Class Diagram ... 35
Class ... 35
Object .. 36
Attributes.. 37
Methods (Operations) ... 37
Relationships ... 37
Interfaces .. 43
Symbols ... 46
Example .. 47

4 UML-Glossary

Chapter Review ... 48
Package Diagram ... 49

Chapter Review ... 51
Interaction Diagrams .. 52
Sequence Diagram... 52

ExecutionOccurence .. 52
Message Types .. 52
Symbols ... 54
Example .. 54
Chapter Review ... 56

Communication Diagram .. 57
Symbols ... 58
Example .. 58
Sequence Diagrams vs. Communication Diagrams .. 59
Chapter Review ... 60

Interaction Overview Diagram ... 61
Component Diagram .. 62

Symbols ... 62
Example .. 63

Deployment Diagram ... 64
Symbols ... 64
Example .. 65
Chapter Review ... 66

Timing Diagram.. 67
Composite Structure Diagram .. 67
Object Diagram .. 68

Chapter Review ... 69

Images ... 70

Recommended Additional Literature .. 72

UML-Glossary 5

Introduction to UML
UML is a standardized graphical display format for the visualization, specification, design and
documentation of (software) systems. It offers a set of standardized diagram types with which
complex data, processes and systems can easily be arranged in a clear, intuitive manner.

UML is neither a procedure nor a process; rather, it provides a “dictionary” of symbols – each of
which has a specific meaning. It offers diagram types for object-oriented analysis, design and
programming, thereby ensuring a seamless transition from requirements placed on a system to
final implementation. Structure and system behavior are likewise shown, thereby offering clear
reference points for solution optimization.

Fig. 1: Forward, Reverse and Round-Trip Engineering

Documentation
One major aspect of UML is the ability to use diagrams as a part of project documentation. These
can be utilized in various ways in the most diverse kinds of documents; for example, Use Case
Diagrams used in describing functional requirements can be specified in the requirements
definition. Classes or component diagrams can be used as software architecture in a design
document. As a matter of principle, UML diagrams can be used in practically any technical
documentation (e.g. test plans) while also serving as part of the user handbook.

Advantages of UML
The use of UML as a “common language” leads to an improvement in cooperation between
technical and non-technical competencies like project leaders, business analysts,
software/hardware architects, designers and developers. It helps in the better understanding of
systems, in revealing simplification and/or recoverability options, and in the easier recognition of
possible risks. Through early detection of errors in the analysis and design phase of a project,
costs can be reduced during the implementation phase. The advantages associated with Round-
Trip Engineering offer developers the ability to save a great deal of time.

Although UML was initially developed for the modeling of software systems, it can also be
implemented for any hardware or organizational project. By allowing processes to be visualized,
they can subsequently be analysed and improved. Developers of embedded systems or real-time
systems may use non-object-oriented programming languages – applying UML makes sense in
this case also!

UML Standard
The official specification for UML 2.4.1 is a complex work of over one thousand pages
(http://uml.org), arranged into the following sub-components:

• Infrastructure (Architectural Core, Profiles, Stereotypes),
• Superstructure (Static and Dynamic Modeling Elements),
• OCL (Object Constraint Language) and
• Diagram Interchange (UML Exchange Format)

The present book covers only the most important UML core elements and in no way constitutes a
complete and comprehensive source of reference. For additional and more specific details on
UML, more advanced literature is referred to (see attachment).

6 UML-Glossary

UML Extensions in Enterprise Architect
Enterprise Architect uses the extension mechanism (Profile) designated in UML to provide new
elements – such as an element for Requirement – as well as additional diagram types. Likewise,
extended properties – such as test windows, job orders, risks, etc. – can also be prepared. Thereby,
a UML-based tool emerges which, together with a likewise integratable development platform,
enables comprehensive project work including requirements management, operational
documentation and more.

Historical Development of UML
Despite the fact that the idea of object orientation is more than 30 years old, and the
development of object-oriented programming languages spans almost the same length of time,
the first books on object-oriented analysis and design methods didn't appear until the early
1990's. The godfathers of this idea were Grady Booch, Ivar Jacobson and James Rumbaugh. Each
of these three “veterans” had developed his own method, each one specialized in and limited to
its own area of application.

In 1995 Booch und Rumbaugh began to merge their methods into a common Unified Method
(UM) notation. The Unified Method was soon renamed as Unified Modeling Language (UML), a
more adequate term since it is mostly concerned with the unification of the graphical
presentation and semantics of modeling elements, and does not describe an actual method.
Indeed, “modeling language” is basically just another term for notation.

A short time later Ivar Jacobson joined in the foray and his Use Cases were soon integrated. From
that point on, these three pioneers called themselves the “Amigos”.

Although the methods of Booch, Rumbaugh and Jacobson were already very popular and held a
large market share, the Unified Modeling Language (UML) became a quasi-standard. Finally, in
1997, UML Version 1.1 was submitted to the Object Management Group (OMG) for
standardization, and accepted. The versions 1.2 to 1.5 both contain several important corrections.
In 2004, Version 2.0 was approved with many key modifications and extensions as the new
standard. UML 2.3 has become standard in 2010, current version UML 2.4.1 has been published in
August 2011 (Source: OOSE).

UML-Glossary 7

Fig. 2: Historical Development of UML

Booch

[Booch]

OMT

[Rumbaugh u.a.]

OOSE

[Jacobsen]

Who = Jacobsen

UM 0.8

[Booch/Rumbauch]

UML 0.9

["Amigos" 1996]

UML 1.1

[OMG 1997]
OCL

[IBM]

Unified Process

[Jacobsen u.a.]

UML 1.3

[OMG 1999]
XMI

UML 1.4

[OMG 2001]

UML 1.5

[OMG 2003]

UML 2.0

[OMG 2004]

OCUP

Zertifizierung

UML 2.1.2

[OMG 2007]

UML 2.2

[OMG 2008]

UML 2.3

[OMG 2010]

UML 2.4.1

[OMG 2011]

UML 2.5 Beta2

[OMG 2013]

8 UML-Glossary

UML Diagram Types
Officially, in UML there is no diagram overview or categorization. Although UML models and the
Repository behind the diagrams are defined in UML, diagrams - or special Repository views - can
be relatively freely specified.

In UML, a diagram is actually more of a collection of notation elements. It is in this way,
for example, that the package diagram describes the package symbol, the Merge
relationship, etc. A Class diagram describes classes, associations, etc. Naturally, however,
classes and packages may still be displayed together in one diagram.

A diagram is composed of a diagram space enclosed by a rectangle with a diagram header in the
upper left corner. This diagram header shows the diagram type (optional), diagram name
(obligatory) and parameter (optional).

The diagram type is, for example, sd for Sequence Diagram, or cd for Class Diagram. The
Parameter field is important for customizable models.

Fig. 3: Diagram Frame Example

UML Version 2.4 contains 13 diagram types which can be divided into roughly two groups. The
group structure diagrams represent the static aspects of a system, while the group of behavioral
diagrams represent dynamic components.

Fig. 4: Overview of UML Diagrams

sd Diagram Name

UML

Diagram

Structure

Diagram

Achitecture

Diagram

Behav iour

Diagram

Interaction

Diagram

Class Diagram Object Diagram

Use Case Diagram

Package Diagram

Composition Structure

Diagram

Component Diagram Deployment Diagram

Activ ity Diagram State Diagram

Sequence Diagram Communication

Diagram

Timing DiagramInteraction Ov erv iew

UML-Glossary 9

Diagram Implementation
To many who are new to UML, the question soon arises as to how these diagrams are actually
associated with one another. This is a very legitimate question; however, UML itself does not give
us a clear answer. It is primarily the software development methodology, or rather the
background processes thereof, which can best answer this question. One possible approach
concerning the order, or phases of a project, in which the diagrams can be implemented can be
shown as follows:

Use Case Diagram Analysis Phase

o which use cases are included in the application to be generated
o which actors are released by this use case
o what use case dependencies are interconnected, e.g.

o whether one use case is contained within another
o whether one use case represents a specialization of another
o whether one existing use case is extended by a second

Activity Diagram Analysis & Design Phase
o which steps will be taken within a use case
o what state transition the involved objects experience when handling changes from one

activity to another
Package Diagram Analysis & Design Phase

o into which packages the application can be subdivided
o which packages allow further subdivision
o what levels of communication must be realized between packages

Class Diagram Analysis & Design Phase
o which relations have to be obtained within a project definition (domain model)
o which classes, components and packages are involved
o via what type of communication cooperation is to take place
o which methods and properties do the classes require
o what are the minimum and maximum numbers of objects to be linked
o which classes are responsible for multiple objects as a container

Sequence Diagram Design Phase
o which methods are responsible for communication between selected objects
o how the chronological cycle of method calls between selected objects is to occur
o which objects in a sequence are to be newly created or destroyed

Communication Diagram Design Phase
o how selected objects communicate with one another
o in which order the method calls are carried out
o which alternative method calls exist should they be required

State Diagram Design Phase
o what state transitions are released by which method call
o which condition will be assumed following object creation
o which methods destroy the object

Component Diagram Design Phase
o how are soft and/or hardware parts capsuled with defined function and defined interfaces
o which components have interfaces to one another
o what software parts create functionality in components

Deployment Diagram Design Phase
o which PCs in the application work together
o what application module will be run on which PC
o on which communication options should cooperation be based

If necessary, the order of diagram use may deviate from that shown in the table because, for
example, the division of the work of multiple programmers cannot be managed. In such case, the
package diagram can first be created with the class diagram. This order serves to show only one
possibility of how you can realize a model of your application, and how the phase transitions can
be formulated.

10 UML-Glossary

The area of application will also have an effect; the resulting diagram order of implemented
diagrams for a business automation job will differ considerably from that of an embedded or real-
time task job.

Fundamentals of Behavioral Modeling
Modeling of Behaviors concerns the description of processes, chronological dependencies, state
changes, the treatment of events, and the like. UML is object-oriented, therefore behavior is
nothing which exists independently, but rather always affects certain objects. When examined in
detail, the execution of a Behavior can always be traced to an object.

Every behavior results from actions of at least one object, and leads to changes in the states of
the involved objects.

In UML, behavior is principally event-oriented. The execution of behaviors is always triggered by
an event. Two special events always occur: the Start event and the End event.

Behavior can be started either directly (i.e. CallBehaviorEvent) or indirectly via a Trigger
(TriggerEvent), such as when a point in time is reached (TimeEvent), when a message is received
(ReceivingEvent), or when a particular value is reached or changed (ChangeEvent).

In UML, four different specifications are provided for behavior descriptions:

 State diagrams (state machines)

 Activities and actions (activities)

 Interactions (interaction)

 Use cases (use cases)

A use case diagram is actually a structure diagram, since the use case diagram itself doesn't
describe processes and behavioral patterns, but rather only the structure (relationships) of use
cases and actors. Nevertheless, the use case diagram is categorized as a behavioral diagram in
many UML publications. The content of this diagram type is showing the desired functionality,
the desired outcome – is the argument.

UML-Glossary 11

Use Case Diagram
Use Case diagrams provide a very good overview of the entire system on a highly abstract level.
They describe functionality - services and activities to be performed - from the view of the user,
and act as the interfaces to the environment. It is important to consider that Use Case diagrams
themselves cannot describe behaviors and processes, but rather only the associations between a
number of use cases and the involved actors. These may be used for the analysis and
management of requirements. Likewise, no order of appearance of described activities/services is
shown. A major advantage of the Use Case diagram lies in the structuring of task assignment;
subsequently – what will be delivered by the system? - all further specifications can be
hierarchically ordered and extended below as Sub Use Cases or other model parts. Help in
securing projects by quickly determining job scope and evaluating cost is another advantage. Use
Cases provide an overview of function on top of the documentation of the planned system.

This type of diagram describes the goals of the user and is especially good for analyzing the
functional requirements placed on a system. It is comprised of only a few yet very intuitive
elements and, due to its simplicity, is very well suited for communication between principal
(customer) and agent (sub-contractor). Both parties can develop a common view of the system,
thereby helping to avoid misunderstandings concerning operational scope in a timely manner.

A Use Case diagram is the graphical representation of the Use Cases and their relation with the
environment (interacting users) and their relations with each other. Important information is
stored within the textual meta-content of the Use Cases or within diagrams behind, providing
detailed information for each one. Use Cases may contain: A self-explaining name, an explanation
of the name (note), pre- and post-constraints and a scenario describing the necessary steps to
fulfill the functionality/service.

By collecting all important functional requirements by Use Cases
it’s also possible to plan and discuss all necessary acceptance test
cases; test cases for the functionality, for each constraint, for the
assigned non-functional requirements and for the included
scenarios.

This Use Case diagram shows two use cases and their associated
actors. When read from top to bottom, these two use cases
suggest a particular order, but in UML this is neither given nor
intended. The diagram merely describes what use cases there are
and the involved parties. Process flow and order can be described
textually within the scenario or later on within additional
behavioral models by using activity, state or sequence diagrams.

Fig. 5: Use Case Diagram

Actors
In a use case diagram, all parties (stakeholders) involved in a procedure are portrayed with the
help of Actors. An Actor is defined as a role outside of the corresponding use case system, and
which interacts with the system within the context of the use case. Actors can be persons who
use the system or external systems which access the system or interact with the system. They
have demands and interests on the system, and are accordingly interested in the results. There
can also be events which are triggered without the involved parties (e.g. time events).

An Actor describes a role, which may be replaced by a discrete person (or system) when realized.
For example the role “Customer” can be replaced by any person being a customer of the bank. In
special cases, when the role cannot be replaced by a discrete person (or system), it has to be
marked as Abstract to express that the actor is a generic role. To qualify an UML element as an
abstract element, the name of the element will be shown in italic in an UML diagram.

Stereotypes may be used to categorize actors like sensors, timers, actuators, environmental
influence, etc.

Customer

Withdraw Money

Supporter

Manage Materials
2

12 UML-Glossary

Notations for Actors
The following illustration shows different notations of an actor. UML provides the stick figure as
the Actor symbol. The role name of the actor is placed above or below the figure. It is possible to
use any user-specific symbol. The block located to the right is the node symbol from the
deployment diagram type. The use of a block-type symbol (or similar) to indicate an external
system1 is widespread, as a stick figure usually indicates a human user.

Fig. 6: Notation of Actors

Use Case
A use case specifies a number of actions executed by a system and which lead to a result which is
usually important to an actor or stakeholder. Use cases are the activities which one names when
describing a process. As an example: for a ticket system, that would be the buying, reserving or
cancelling of tickets.

The following illustration shows various forms of notation of use cases. The illustration on the left
is standard notation. It is also possible to note the names of the use cases under the ellipse. The
advantage here is that the size of the ellipse must no longer scale to the name of the use case.
Interestingly, unlike actor notation, placing the name above the ellipse for use cases is not
practiced in UML.

Fig. 7: Notation of use cases

System (System Boundary)
System is not a strictly UML modeling element. System can be
understood as the context of the use case in which the use cases of
specific actions are executed. System can be a class or a component
which represents the entire application. The system is represented by
one or more system frames (boundaries); Use cases – services and
activities - to be performed by the system are shown in the system
frame.

Attention: To draw actors within a boundary will be incorrect!

Relationships
Use cases and actors have a certain relationship with one another. Relationships are modeled
with lines. Linking actors and use cases in this way means that both communicate with each
other. An actor is linked to use cases using simple association. This indicates an interaction with

1 right click on element in the diagram | Advanced | Use Rectangle Notation

User

«actor»

Actor

another system

Use Case

Use Case

System

UseCase

Actor

System Boundary

Fig. 8 System

UML-Glossary 13

Customer

Teller Machine

withdraw money

«actor»

Bank-Server

1 0..1 0..* 1

the system belonging to the use case, and in the context of that use case. Relations can carry
additional information, if needed.
It’s possible to add multiplicity2; a multiplicity on the use case side indicates how often this use
case can be executed by this actor at the same time. Without a writing, multiplicity will be 0..1 by
default. On actors side a written multiplicity means the number of actors of the given role to be
involved when interacting with the use case. Without a writing, multiplicity on actors side will be
1..1, which can be written as 1 with same meaning.

It is not common for one to use navigable relations; however, these are allowed. These do not
represent a specific direction of data flow – as they are usually interpreted – but rather indicate
the initiator of the communication between actor and system.

Indicating a navigable association (arrow to or from an Actor), even more semantics with a use
case can be expressed. A directed association describes which part is the active and which is the
passive. When an actor navigates to a use case, then the Actor is the active party and initiates the
use case. Vice versa, in navigation from use case to actor, the actor is passive and will be required
and requested by the use case to participate.

The left sided example Fig. 11 expresses
that the Customer triggers the use case
withdraw money, but once a time. To
process withdraw money the Bank-Server is
needed (it’s passive). While the Bank-
Server can be involved in any number of
withdraw money use cases at the same
time, the Customer can be involved only
once at the same time.

Use Case Relationships
Use cases can also be reliant on one another

 With the “Include” relationship, a use case is bundled into and is a logical part of another
use case. It represents a compulsory relationship and is therefore often referred to as
“must-relationship“.

 With the “Extend” relationship, however, one can also specify that a use case is to be
extended under certain conditions and on another specific point (the so-called extension
point). It represents an optional relationship and is therefore often referred to as “can-
relationship“.

 Use cases can also be generalized, whereby the general rules apply. Use cases can also be
abstract (italics) and first be made clear via sub-use-cases (specialized Use Cases).

Include Relationship (Include)
A part of a use case which appears in the same identical form in other use cases may be
transferred to its own use case and re-integrated universally via an Include relationship in order
to avoid the redundant specification of these identical parts. Unlike the Generalization
relationship, when utilizing the Include relationship no characteristics are passed on.

The Include relationship is illustrated by a dashed arrow with open point in the direction of the
use case to be included. The key word «include» is noted for the arrow. An actor must not
necessarily be linked to the integrated use case.

Integrated use cases are often provided with the stereotype "secondary". This is not UML-
Standard, but it is in common use since they are normal incomplete (use case fragments) and
must be distinguished from the primary (normal) use cases.

2 The multiplicity is a time-dependent value with a lower and an upper border, written as x..y , indicating how many
instances of the element are needed. Multiplicity describes the amount of possible instances, cardinality on the other
hand a concrete amount.

Fig. 9 Multiplicity and active/passive actors

14 UML-Glossary

Fig. 10: Example of «include» relationship

Within a use case diagram an include relation specifies that the use case always uses the second
one. The timing of the usage is not expressed by the diagram itself, it may be described within the
use case scenario or by a behavioral diagram describing this use case in detail.

Hint: Please pay attention to include only use cases of the same specification level.

Functionality needed several times should be modeled as use case once and can be used by others
with relations any time needed. Included use cases are always processed when the use case
pointing to it with ≪include≫ is executed.

Extend Relationship
If a part of the tasks are transferred from one circumstance to another, this is modeled in its own
use case. The arrow is given the stereotype “extend”. The Extend relationship points to the use
case to be extended, and starts from that use case which describes the extension's behavior.

This has been defined by the inventors of UML, they preferred to have “extend” instead of
“extended by”.

A use case can define any number of extension points optionally. A condition on the Extend
relationship is optional. If no condition is indicated, the extension will always occur. It is not
absolutely necessary for an actor to be linked to the extended use case.

Fig. 11: Example «extend» relationship

The extended use case may be described more detailed by using extension points (Fig. 12). An
extension point describes the event activating the extension. An use case may define several
extension points. In addition to an extension point you may define conditions. If you don’t specify
a condition, the extension will be executed always. The example shows the use case withdraw
money in rectangle notation3. The use case contains two extension points4. Both extension points
are describing the sufficient trigger (logical “or”, one of them is enough). But there is also a
condition paper available. At least one extension point for a must become true AND the condition
paper available must be valid to execute print receipt!

As in the case of an include the diagram does not specify the timing circumstances. It may be
found within the scenario(s) of the use case or in behavioral diagrams describing the use case in
detail.

3 right click on element | Advanced | Use Rectangle Notation
4 right click on element | Advanced | Edit Extension Points…

customer

withdraw money

«secondary»

choose language
«include»

withdraw money

customer

print receipt
«extend»

UML-Glossary 15

Fig. 12: Example «extend» with extension points and condition

If an use case is extended by several other use cases, you might reference the extension leg within
the extension points by adding a index character.

Please pay attention to stay at the same abstraction level when defining extensions.

If a constraint has been defined, it has to be true to enable the extension.

Specialization (Generalization)
Another relationship is “Specialize”. A use case (or an actor) stems from a generalized use case (or
actor) and specializes it. For example, saving for the actual
distribution channel, a sale at the box office is similar to a sale
via the Internet. It is possible to create a general use case,
“sales”, and in specializing this use case to include the altered
handling steps which occur due to the different distribution
channels. This general use case is thereby assigned proxies for
the various roles assumed by it. The same concept applies to
actors.

Generalizations will be used for generic or abstract
descriptions of functions too. The use case perform
Authentification in the right sided figure is an abstract5 one
and will not be performed itself. The two use cases perform
Authentification by finger print and perform Authentification by
PIN are two concrete variants of the generic Use Case. The
perform Authentification may be used as a “placeholder” to stress that customers will have to
identify themselves by choosing one of the variants. The abstract use case perform
Authentification contains a generic description, what authentification has to provide, while the
other use cases describe the deviations for the specific variant.

An actor describes a role, which may be defined arbitrarily
abstract. For example a customer of any bank may use
withdraw money. If the bank operating the teller machine is
the borrower’s bank, the customer may deposit money too.
This may be modeled by an additional actor Customer of TM-
Operating Bank. Due to the fact, that this customer is also a
“standard” customer, he is allowed to use everything that
Customer is allowed to use – withdraw money.
In the diagram these circumstances are expressed by the
generalization between Customer of TM-operating Bank and
Customer. By this he becomes a Customer additionally
(generalization is also named “is-a”), and he/she inherits
withdraw money by this. On the other hand, Customer is not
allowed to run the use case deposit money.

5 select the element and within the window [View | Element Properties] set Abstract to True in the section Advanced

Customer

withdraw money

extension points

... b

receipt ordered by button (a)

amount >=$100 (a)

....

print receipt

b

«extend»

a

«extend»

{paper

available}

Customer

perform

Authentification

perform

Authentification by

finger print

perform

Authentification by

PIN

Fig. 13: Generalisation of Use
Cases

Customer

Customer of

TM-operating Bank

withdraw money

deposit money

Fig. 14: Generalisation of
Actors

16 UML-Glossary

Hint: The opening triangle at the side of the generalist was chosen as symbol to indicate that the
specialist has more functionality/capability, exceeding the functionality/capability of the
generalist.

Descriptions and Notes

For all use cases and actors, UML allows descriptions to be added in
the form of verbal and structured phrases. Due to their complexity,
these are not suitable for display in diagrams. You can therefore
add notes to the diagrams which refer to key design concepts.
Notes are displayed as a square, the upper-right corner of
which is folded in. A dashed line establishes the link between
the note and element to be explained.

To avoid parallel, conflicting comments – in diagram and within
the element – you may put a reference to element content6 for
the note in the diagram.

Graphical Elements

The following table lists the symbols used in modelling a use case diagram:

Name/Symbol Usage

Use Case

A use case is illustrated as an ellipse containing the name of the use case. The
name of the use case is typically formed by a noun and verb whereby the object
to be manipulated and the activity to be carried out are described in a clear and
concise manner. Using the rectangle notation7 allows to display more details.

Actor

A use case is triggered by an actor. Its illustration depicts a stick figure. Actors
may also be placed within a square with the stereotype «Actor» placed above the
name of that actor.

Use

When an actor has triggered a use case, that actor has formed a relationship with
that use case. This relationship is shown by a line connecting the use case and the
actor.

Extended

When a use case is extended by another under a specific condition, this
relationship is indicated by connecting the use cases with an arrow labeled with
the «extend» stereotype. The arrow points to the use case which is being
extended.

Includes

If one use case is contained within, and is therefore a key component of, a second,
then both use cases are linked by an arrow labeled with the «include» stereotype.
The arrow points to the contained use case.

Generalisation

This relationship can be modeled between actors and use cases, and means that a
use case or an actor is being specialized. The arrow points to the actor or the
specialized use case.

Note

Note Connection

Notes are diagram elements which are applied to other modelling elements. They
contain information which provides a better understanding of the model, and are
connected to the element by a dashed line.

6 select the element | Add | Note | OK (leave empty); right click on connector Link this Note to an Element Feature…
7 right click on element | Advanced | Use Rectangle Notation

Use Case

Benutzer

Notiz

deposit money

Only for owned

account!

Fig. 15: Notes in Diagrams

UML-Glossary 17

Example
A customer wishes to withdraw money from an automatic teller with a bank card. The actor
named customer plays this role and is the generalization for own bank customer and third-party
bank customer. The specialized actors communicate via the role of the customer with the identify
card use case which proceeds equally for both types of customer. This use case contains the use
case check account and PIN, whereby the right of the customer to use the card is assessed. If an
incorrect PIN has been repeatedly entered, the card is withdrawn. To model this, the use case
identify card is extended by the use case impound card. This is executed only under the condition
that the customer repeatedly entered the incorrect PIN.

Both actors, own bank customer and third-party bank customer, communicate directly (and not via
the role of customer) with the use case pay out. This procedure varies between these two types of
customer; i.e. the highest withdrawal amount and/or fees per transaction can vary.

Fig. 16: Example of a Use Case Diagram

ATM

customer

bank customer

foreign customer

identify card

validate account

and PIN

card feeding

pay cash

«include»

«extend»

18 UML-Glossary

Chapter Review

Select the correct answers:

1. The Use Case Diagram

[a] illustrates use cases of a software product in a chronological context

[b] shows the structure of elements with methodologies and attributes

[c] is used to define and communicate requirements on a software product

2. A person who operates a software product

[a] slips into a role represented by an Actor

[b] is indicated by name in the Use Case diagram

[c] is the central figure in the Interaction diagram

3. A Use Case is represented by

[a] a block symbol with names above it

[b] an ellipse with names within and below

[c] a rectangle with a colon before the name

4. An Include relationship states that

[a] one use case must appear within another

[b] one use case will probably appear within another

[c] one use case represents a specialization of another

5. An Extend relationship states that

[a] a Use Case may be processes together with another one optionally

[b] a Use Case must be executed together with another one

[c] a Use Case depends on another one an cannot be extended

Correct answers: 1c, 2a, 3b, 4a, 5a

UML-Glossary 19

Activity Diagram
Using Activity diagrams, chronological cycles can be graphically depicted as they are described in
use cases. Single activities and their interdependencies are shown. Use cases can also be
described with natural language, so-called scenarios, whereby the overview remains intact only
for very simple processes. With Activity diagrams, however, it is possible to show even very
complex processes with many exceptions, variations, branches and repetitions in a clear and
coherent manner. In practice, it is now customary to cancel descriptions of scenarios expressly in
diagrams in order to trace the contained expressions when covered during implementation, and
to set up test cases.

The semantics of the individual model elements differs greatly from the model elements in UML
1.x despite the same terminology. In UML 1.x, the activity element yields to the action, whereas
an entire activity model is now called Activity. A number of references to the UML versions can be
found at the end of the chapter on Activity diagrams.

Activities
Activity describes the procedural order of actions. It is represented by a rectangle with rounded
corners. The Activity's nodes and edges are located within the rectangle. In the upper left corner is
the name of the Activity. Within an Activity you will find Actions. There are several types of
Actions available: normal (an atomic working step), CallBahaviourAction and CallOperationAction
for referencing behavior defined somewhere else. It’s also correct to draw Activities within
Activities – for better structuring.

As with every behavior in UML, an Activity can also have parameters. Inbound or outbound
objects in an Activity model are identified as parameters of that Activity. These objects are placed
on the Activity rectangle and also below the name of the Activity with type designations listed.

The following example shows an activity for the production of sixpacks. This activity has two
parameters: an inbound parameter, produced bottles in the condition [empty], and an outbound
parameter, new sixpack. The precise declaration of activity parameters are at the top left directly
under the name of the activity.

Fig. 17: Example of an Activity, “Production of Sixpacks”

This activity shows various kinds of nodes and edges.
The rounded rectangles are actions. The small rectangles on the actions are so-called pins. They
provide the entry and exit parameter values for the actions.

The Token-Concept for Activity-Diagrams
Up to UML 1.x Activity-Diagrams have been defined as a mixture of State-Diagrams, Petri nets
and Process-Diagrams, leading to problems, practical and theoretical ones.

Starting with UML 2.x the token semantics of Petri nets has been applied, providing precise rules
for the logical flow and flow of objects, including parallelization, synchronization and merging of

manufactured

bottles [empty]

new

six-pack

produce six-packs

manufactured bottles, new six-pack

«precondition» precondition1

«postcondition» postcondition2

A

manufactured

bottles [empty]

new

six-pack

bottle

bottles

[bottled]

bottles

[empty]

label bottle

bottles

[bottled]
bottles

[labeled]

bundle

package
six-pack

[go on]

[closing time]

20 UML-Glossary

paths. A token corresponds to an executing thread, which can be generated and destroyed. The
token represents the progress of the logical flow or of the data-/object flow. By this formal
specification of the semantic of Activity-Diagrams it’s possible to apply an automatic verification
of Activity-Diagram, namely a simulation.

Due to the revision, a change of terms is in effect:

 The rudimental, indivisible steps are now named Actions (and not Activities).

 A collection of steps, means a complete Activity-Diagram or a part of it, are called now
Activities.

 While in UML 1.x each token incoming by a transition started a working step, now an
implicit synchronization is in progress, that means all incoming object- and control flows
have to reach the element to start its behavior.

 Similarly the dropout of an Action or Activity occurs at the moment when all legs can be
“fired”. Formerly the legs have been named transitions and the author had to specify
conditions, ensuring that only one transition was selected. Now the firing is delayed for
all legs until all conditions for all legs become true.

 There are new elements:
o Activities may have object nodes as input- or output parameters.
o Pre- and post-conditions for Activities can be specified now.
o Starting- and final activities are now named Initial node and final node.

Connections
The connections between actions differentiate between control flow and object flow. In notation
both angles are the same: a solid line with open point.
Object flows can either be expressed with a straight line with an arrowhead between object-pins
(a small rectangle on the boarder of an activity or action) or by pointing to or from an object,
datastore or central buffer node.

A control flow connects actions and activities.
When insert card is finished, the token moves
through the control flow towards check card if
check card is ready to be activated.

By an object flow, beside control data (or physical
or logical objects) are transmitted. If several
tokens are arriving, FIFO (first in, first out) is the
applied rule. Instead of the pin-notion, an object
symbol may be used.

An object stream is a special cases of object flow:
a continuous flow of data (objects), like a
conveyor band.

Object flows and control flows may be separated
too. A central buffer node or a data store can be
used for storing data temporarily or permanently.

Items may be stored in the basket (Central Buffer
Node) and may be retrieved later. If the process is
cancelled before the recall happens, data are lost
– in contradiction to datastore.

insert Card check card

control flow

insert card

:card

check card

:card

object flow

insert card :card check card

:bottle

label bottles

:bottle :bottle

packaging bottles

:bottle

object flow

object stream

select items ... ask for

shipment

«centralBuff...

basket

control flow

object flow

Fig. 18: Control Flow / Object Flow

UML-Glossary 21

Junctions (Decision and Fork=Parallelization)
A program flow junction is created by using a diamond (decision) symbol. A decision may have
any number of outgoing legs (usually at least 2). Showing up more legs, it’s treated as a switch.
Alternatively a switch can be expressed as a sequence of decisions - wasting editing time and
space in the drawing, this is unusual. Each outgoing leg of a decision must have a [Guard] !

Hint: Guards must cover all possibilities and must not overlap.

Two outgoing legs with the guards [x<0] and [x>0] … incomplete, x=0 cannot be handled!
Two outgoing legs with the guards [x≤0] and [x≥0] .. overlapping when x=0, disjunct
junction not possible → not correct!

Several outgoing legs on an activity or action without a guard define splitting (=parallelization)!
To avoid a mix-up with the implicit junction, it’s a usual style not to use the implicit junction at all
but the decision (diamond) symbol. After a decision, always a disjunct selection is in progress.

Fig. 19: Parallelization and Junction – implicit vs. explicit

Merge
By a decision an alternate path is selected. To realize a loop, a
merge symbol is needed.

Connecting the false path directly to the activity select appointed
date will simply be wrong: Two incoming lines are allowed in UML,
but this expresses an implicit join – synchronization – on all
incoming paths a token will be needed to start select appointed
date!

Suggestion: Avoid implicit semantic at all.

collect user

data

prepare

travelling

material

place

reservation

collect user

data

prepare

travelling

material

place

reservation

place

reservation

generate

offer

review travel

request

place

reservation

generate

offer

review travel

request

Equivalent

recommended

recommended

[reservation

successful]
[reservation

failed]

[reservation

failed]
[reservation

successful]

...

select appointed

date

select participants

appointment

appropriate?

Merge

...

[false]

[true]

Fig. 20: Merging

22 UML-Glossary

Synchronization (Join)
Program flow is divided with a splitter (Fork, Parallelization symbol). The token hitting the fork
generates a token for each outgoing leg, going their way now independently. Independence does
not mean simultaneous – the behavior may happen simultaneous or not. If an outgoing token of
the fork cannot be taken immediately by the subsequent element, its stored in a FIFO list until the
subsequent action/activity can take it.

Fig. 21: Synchronization = Join

Independent processes can be consolidated by a Join Node (i.e. synchronization). A join node may
have two or more incoming legs. For continuation it’s necessary that on each incoming leg a
controlflow- or objectflow-token reaches the join node. If this condition is true,

 all controlflow-tokens and identical objectflow-tokens are consolidated to one, singular
token.

 All incoming objectflow-tokens are forwarded, but identical ones are consolidated into
one each and are forwarded in a single instance only.

A join node has an implicit AND semantic. If
only some of the arriving tokens shall be
sufficient to continue with the
synchronized path, UML provides the Join
Specification8 (JoinSpec) feature. By this you
may specify a condition, sufficient for
synchronization. In our example, theatre
selection and one of the payment methods
are sufficient.

Composition of Activity Diagrams
Activities can be hierarchically composed. An action can be reconstituted from a number of
detailed actions. The inbound and outbound edges of this constructed activity and the detail
models must correspond. With this cascading of diagrams, one can retain an overview of more
complex processes. This subcategorisation into sub- or detail-models can be helpful and also
necessary in many regards: a) Adequate subdivision to maintain standard paper format, and b)
Creation of detailed classifications that are included in various documents and approved by
various responsible persons.

A call to an activity is represented by a Call Behavior Action.

Call Behavior Actions can be identified fork symbol in the lower right corner of the action.

In the figure Enter PIN beyond the Activity update display is called within the loop as well as after
exiting the loop. update display is defined only once, but called by the actions several times.

To use this calling feature instead of copying the activity is strictly recommended. Please note:
You can only call activities by Call Behavior Actions!

8 see Properties | Advanced

prepare travel

materials

place

reservation

re-check travel

materials

prepare travel

materials

place

reservation

re-check travel

materials

recommended

Equivalent

select film theatre

ticket cash payed

ticket payed with

voucher

{joinSpec = a and b

or a and c}

watch film

a

b

c

Fig. 22: JoinSpec

UML-Glossary 23

Fig. 23: Calling an Activity by an Action

Call Operation Actions are similar to Call Behavior Actions, not calling a behavior (activity) but an
operation directly – the operation is defined somewhere else, for example as an operation of a
class. In the figure above, the operation FetchKey of the class ATM is called by the action key. This
is intended by several quality systems - like SPICE, CMMI, … Independently this small effort will
pay back later on, when a change request has to be implemented.

Enterprise Architect provides possibilities for structuring elements: A
structured (=composite) element contains a link to a diagram where the
reader will find detailed information concerning the element.

Graphically composite elements can be identified by a chain symbol in the
right, lower corner.

This is not defined within the UML-specification, but offers a very powerful
possibility to structure diagrams.

To cascade diagrams enables to achieve a good overview and an easy drill-
down-feature to reach more details. This will be necessary and/or helpful
to:

a) deal with a limited printout format properly and
b) to separate the content in a way, where different reviewers with

different competency and/or authorization level can agree
easily.

Responsibility Zones (Swimlanes)
Single actions in the activity diagram are usually carried out by a responsible actor. In order to
illustrate the allocation of the single actions to the actors in a diagram, so-called Swimlanes can
be introduced. These vertical or horizontal lanes symbolize the actor and guide the activities
through the graphical assignment of the individual actions to a lane in that actor’s area of
responsibility. Comment: This is represented only graphically, not logically!
Alternatively to swimlanes Enterprise Architect offers partitions, graphically very similar to
swimlanes, but logically represented in the model. This allows a sorting of elements in the project
browser by partitions, entering of detailed properties for the partition and – last but not least –
pointing to an instance classifier carrying the definition of the task owner. The next figure gives an
example of partition usage.

Enter PIN

ActivityInitial

update display

:update display key

(ATM::FetchKey)

:update display

ActivityFinal

Call to this activity (stored somewhere

else) by Call Behavior Action

defined only once in the model

ATM

+ FetchKey() :void

Call by Call

Operation Action

[length<4]

[else]

Activ ity1

act Activ ity1

ActivityInitial

Action1

ActivityFinal

Fig. 24: Structured
(composite) activities

24 UML-Glossary

Asynchronous Processes
Controlflows or objectflows are connecting activities and actions. Processes defined by that are
“synchronous” processes – determining the flow through possible subsequent working steps.
By usage of signals (Send Signal Action, Receive Signal Action and Timer Action) processes can be
uncoupled, can be transformed into asynchronous processes.
By a Send Signal a broadcast signal is emitted. All Receive Signals, for which this signal is
designated, will be activated. To enhance the readability dependency connectors may be used
pointing from the Receive Signal to the Send Signal element!

Fig. 25: Send / Receive

The figure above shows that place Order is a Send Action that is taken by the Receive Action named
accept Order by the Internet Book Shop

Hint: Receive Signal Actions do not need to have an incoming leg. UML uses the rule, that any
element without an incoming leg will earn a token when the activity diagram comes to life. The
exception is the interrupt region – elements within such a region without an incoming leg will
earn a token at the moment when the flow enters the region.

Interrupt Region

An Interruptable Activity Region
defines a special part of a
process. When the region is
entered by the token coming
from Read Card, the process can
be interrupted at any time.
When the “normal” token
crosses the border of the region
behind the activity Enter Pin
both receive symbols (Time
Event is also a receive) lose their
tokens.
If an interrupt reaches the
Receive of Cancel Button or the
time defined in the timer
elapses, the “normal” token is
destroyed and a token runs

along the interrupt flow connector
(lightning symbol) to the outside also killing

all tokens of the not yet fired receives within the region. Please note: The interrupt flow must lead

customer Internet Book Shop

Search for Book

on Page

Put into

Ordering Basket
place

Order

accept

Order

take Book from

Store

deliver

Book

Deliverer

rings

confirm Receiptread Book

ActivityFinal ActivityFinal

InterruptibleActivityRegion1

Enter Pin

Read Card

Cancel

Button

45sec

Check PIN Confirm Cancel Display "Timeout

Elapsed"

Fig. 26: Interrupt Region

UML-Glossary 25

from an receive inside the region to an element outside of the region. UML provides no definition
how the disintegration of the “normal” token is handled. Usually disable/enable sections are used
in the detailed description of activities like Enter Pin to express if the interrupt is immediately in
effect or will be cached until the enable-statement is reached.
In out example above enter Pin can be interrupted either by the cancel-button or be the elapse of
the timer 45sec.

Graphical Elements

Name/Symbol Use

Action

The Action symbol is a rectangle with rounded corners. By definition,
an action is a single step which can't be further subdivided, nor be
broken up by outside influences.

Subactivities

The symbol for combined activities is the Activity symbol with two
small activity symbols drawn into the lower right-hand corner.

Call Behavior Action

A Call Behavior Action allows to call any behavior (activities) by this
element. This will avoid redundant definitions of activities.

Call Operation Action

A Call Operation Action calls a discrete behavior of a structure
element, for example a call to an operation of a class or a use case or
… The names of the element and of the behavior will be shown as
<Element name>∷<behavior name> .

Control Flow

Two actions are connected with an arrow when the activity flow
changes from one action to another. The arrow points in the direction
of program flow. The arrow can receive a condition as a label when
the program flow takes place in this condition only. This is the case
when numerous transitions emerge from one activity, or if flow is split
by a diamond symbol.

Junction, Merge

Program flow can either branch out or be re-united with a diamond
symbol. Should one transition enter and several exit, then this is a
Decision. Should several enter and only one exit, this is a Merge, in
which case no labeling is used.

Object Condition

Object Conditions are represented by a rectangle in which the name
and condition of an object are given

Object flow

An object flow describes the transmission of control from an
action/activity to the next one and additionally transfers data/objects.
This can be expressed by object nodes or an object between the
actions/activities. Objects and object pins are instances of a class, a
Central Buffer Node (transient buffer node) or a Datastore (persistent
buffer node). Object nodes and objects may have a type (:card) und
optional they may define an actual state ([unread]).

:Activ ity1

Action

(::)

:card

[unread]

:card

[unread]
:card:card

:card

26 UML-Glossary

Name/Symbol Use

Splitter

Using this element (Fork), program flow can be split into several
program flows which run parallel.
The entering token (control or object token) is duplicated for each
outgoing path.

Synchronisation

This element merges program flows which were separated by the
splitter. A Synchronization can also take place which halts processing
until all parts of the entire flow have arrived at the Synchronization
element. This AND-semantic may be redefined by a Join Specification.

Start Point

The entry point which starts processing after a use case is triggered is
illustrated as a filled-in circle. When many start points are available,
the concerned process branches are started parallel. If no start point is
available, all nodes with no entry edge are interpreted as start points.
To ensure proper understanding, one start point per process should be
defined.

Activity Final

After all actions of an activity have been processed, program flow
ends this activity. This point is shown with an end point – its symbol is
a small filled circle surrounded by a larger circle. An activity diagram
may have as many end points (Activity Final) as desired; endlessly
running processes must not have one; if one wishes to express the
end of an activity at numerous points, then the paths must not be
merged.
Warning: The Token which ends up here is not cancelled, but rather
returned to the superordinate element that was allowed to jump to
the current diagram. The sub-process (all still running tokens in the
diagram) will be terminated!

Flow Final

Cancel, Flow Final, means that a Token reaching this symbol will be
cancelled. The process branch is cancelled here. Should further Tokens
exist, the entire process will be continued; if it’s the final Token, then
the entire process is ended.

Swimlanes

To model program flow with actions not belonging to the same areas
of responsibility, like to different packages, areas of responsibility
(Swimlanes) can be modeled with vertical or horizontal lines. The
name of this area between two lines is labeled at the top with the
name of the responsible actors’ instance.

Send Signal Action

A Send Signal is an action used in a process to transmit asynchronous
messages to other processes.

Receive Signal Action

A Receive Signal is an Action waiting for a signal (event). At the
moment the event is arriving, the defined action is performed and the
flow is continued. Receive Events are used to model asynchronous
behavior.
If a Receive Signal Action has no incoming leg and the element
carrying the Receive Element (region, diagram) is active, it’s ready to
“fire”.

Time Event

A Time Event generates an output (token) periodically. The output
continues the subsequent flow. It may be used together with an
interruptable activity region.
If a Time Event Action has no incoming leg and the element carrying
the Time Event Element (region, diagram) is active, it’s ready to “fire”.

Event1

Event2

1h

UML-Glossary 27

Name/Symbol Use

Interruptabel Activity
Region

An Interruptable Activity Region is an area which can be left by events
(Receive Events, Time Events). Actually performed actions/activities will
be stopped and the alternate leg (interrupt flow, lightning symbol)
will be used.

Datastore

A Datastore is a persistent buffer node. It’s used to take data/objects
out of an object flow. By this you can express an access to already
stored data or a persistent writing of data.

Central Buffer Node

A Central Buffer Node is a transient node. It has the same behavior as a
Datastore, but the stored content will be destroyed when the activity
ends – when an Activity Final is reached. This is the semantic of a local
variable within an operation within OO-oriented programming
languages.

Interrupt Flow An Interrupt Flow is used to exit from an Interruptable Activity Region.

«datastore»

Datastore1

«centralBuffer»

CentralBufferNode1

28 UML-Glossary

Example

Fig. 27: Example of Activity: Prepare for Party

In the example above a process for preparing a party is modeled. The model has been divided into
several structured diagrams.

ActivityInitial

:Food

Shopping

:Food

ActivityInitial

prepare shopping

list

collect foods pay foods

ActivityFinal

Food

Dish

:Food

:Dish

Cooking

:Food

:Dish

:Dish

party

:Dish

ActivityFinal

:Dish

:Food

Cooking

:Dish

:Food

sing a song
:Food

:Food

prepare

foods

:Food

:Food

FlowFinal:Food

:Dish

prepare dish

:Food

:Dish
Dish enjoyable?

:Dish

dispose dish

:Dish

:Dish

:Dish

serve dish on

plate

:Dish

:Dish

order

pizza

InterruptibleActivityRegion1

watch TV

delivery

boy rings

take pizza

order

deliver

pizza
:Dish

pay pizza
:Dish

1h

:Dish

prepare

sandwiches:Dish

[false]

[true]

UML-Glossary 29

The first diagram describes three activities processed sequentially: Shopping, Cooking and party.
Shopping is modeled as structured activity, showing the subsequent activities inside of Shopping.

From Shopping an object flow transfers foods bought towards the activity Cooking. The types
Food and Dish have been modeled as classes and may be described in detail there, for example be
adding attributes like calories, weight, etc. .

Cooking has been modeled by a separate diagram. The activity cooking receives Food as Input and
forwards Dish as an output. Cooking start with concurrent processes: preparing foods is
performed while a song is sung. When the song ends, this thread is terminated.

The activity prepare dish transforms foods into a dish. If the dish is not enjoyable, it’s disposed and
a pizza will be ordered.

The ordering is a Send Signal Action covered by take pizza order, a Receive Signal Action. This
triggers another process, not shown in the current diagram.

While waiting for the pizza, watch TV is started – within a Interruptable Activity Region, which can
be left be the ringing of the delivery boy or by a timer set to 1 hour. Either the pizza is delivered
within one hour – it will be paid and served then – or the timer elapses and some sandwiches are
prepared and served, both by merging the flow at the merge node.

After putting the dish on the plate, the activity cooking is finished.

Hint: If the actual token position is outside of the interrupt region, all incoming signals will be
ignored!

30 UML-Glossary

Chapter Review

Select the correct answers:

1. The Activity Diagram

[a] shows the chronological order of actions and activities

[b] has not changed very much since UML 1.4

[c] shows the size of actions and activities relative to their duration

2. An Activity

[a] can include additional activities which are hierarchically composed

[b] is a process step which cannot be further divided

[c] illustrates the communication between objects

3. Splitting and Synchronization are applied to

[a] compare results of a decision

[b] emphasize the time duration of actions

[c] illustrate the parallelism of actions

4. Swimlanes are

[a] areas of responsibility named after their responsible actor

[b] areas of responsibility displayed within their actors

[c] the conditional transition between two actions

Correct answers: 1a, 2a, 3c, 4a

UML-Glossary 31

State Machine Diagram
State Machine diagrams are not an invention of UML, but can rather be traced to David Harel’s
statecharts developed in the 1980’s. This display format was taken on in UML.

A State Machine diagram shows a series of conditions which an object can take up over its
lifespan, and the causes of the state changes. One can model the state and the changes in state of
an object in dependency on executed operations. Special value is placed on the changeover from
one state to the next. In this way, one can model an object from initialization to release. The State
Machine diagram describes through which operations or events the conditions of the objects are
changed. Furthermore, one can also see which configuration the attributes of an object have or
must have before changeover.

An object can be modeled as a state machine diagram / -“system” as long as it can be given a list
of states for which the following applies:

 The object is always (at every point in time of its existence) in a (1) state on this list; put
differently:

 The object never finds itself in none of the named states (if so, then at least one state is
missing on the list)

 Never in more than one state on the list (if so, then the state sub-categorization has been
incorrectly chosen)

An object in a state can remain there, but it is also possible to specify “Activity” in states.

If an object is in a state, then sub-states can also be modeled for this state; for example, in a sub-
ordered diagram (Composite Element/Child Diagram). If the behavior in a state of a procedural
nature, then the sub-diagram can of course also be a state diagram of another kind.

State Machine diagrams must have a starting state and can have an end state. State Machine
diagrams, so-called transitions, are always triggered by an event (e.g. requirement, timeout, etc.).

Fig. 28: Example State Machine Diagram

alive

Initial

Final

single
married

divorced widowed

death

birth

marriage

revocation

[before: single]

divorce

death of

partner

revocation

[before:

widowed]

revocation

[before:

divorced]

marriage

marriage

32 UML-Glossary

States
States are modeled using rounded rectangles. They can contain a name and, optionally, can be
divided by horizontal lines in up to three areas. At the top is the name of the state. If the name is
not entered then the state is anonymous. Existing state variables with value allocations typical
for this state can be entered in another area. The third area within the state symbols can contain
a list of internal events, conditions and resultant operations.

Event stands for three possible behavioral patterns:

 entry – triggers automatically when entering a state.

 exit – triggers automatically when exiting a state.

 do – is triggered over and over as long as the state isn't changed.

Transitions
Transitions from one state to the next are triggered by events. An event is made up of a name and
a list of possible arguments. A state can place conditions on the event which must be fulfilled so
that this state can be taken in by this event. These conditions can be independent of a special
event.

An action can be carried out parallel to a state transition. The notation of a transition appears as
follows:

Event [Guard] / Action

“[Guard]” and “/Action“ are optional components - obviously. The listing of an event at the
transition from the start point to the first state may be omitted. The event itself can also be left
out on other transitions. If this is the case, then the state will automatically be changed when all
activities of the previous state have been processed. The NO event (Trigger) is also designated as
ANY Trigger - this event is ALWAYS present.

Symbols
The following table contains the state diagram symbols.

Name/Symbol Usage

State

The state of an object is symbolized by a rectangle with rounded
corners. The State is named within this symbol.

Object Creation

The start point of the state diagram is shown with a filled circle. It is
identical with the object creation. Only one start point per State
diagram is allowed and must be available. The location of the start
point is optional.

Object Destruction

The chain of state transitions ends with the object destruction. The end
point is shown as a filled circle surrounded by a concentric circle. This
symbol can be left out for endlessly running processes, but it may also
be entered numerous times. Where applicable, the Token returns to the
end of that activity in the super-ordinate diagram that called the sub-
ordinate diagram.

Transition

Transition is drawn by an arrow. The arrow is labeled with the name of
the trigger that changes the object state. A Restriction [Guard] can be
entered in brackets. This causes the object State to be changed only
when this restriction has been fulfilled. Furthermore, behind a “/“, an
activity list can be entered to be executed at transfer. Guard and
activity lists are optional – even the trigger may be omitted on the
transition from the Initial or if an ANY-Trigger is modeled.

sm Zustandsdiagramm

State

sm Zustandsdiagramm

Initial

sm Zustandsdiagramm

Final

UML-Glossary 33

Example
Startup of an automatic bank teller and main states. When switched on, the teller runs through a
self-test. Depending upon the result, either the normal state or the error state is engaged. It has
also been determined that, in case the self-test require too much time, that also here the error
state is engaged. When a card is inserted, it is examined. Depending on the result, the machine
continues to either the PIN-query or the cancel state. Further states such as account balance
query, availability of funds, etc. are not shown here.
The chain symbols show that there are sub-diagrams that more precisely describe the behaviors
in the states. Sub-diagrams can freely use as many Behavior diagrams as desired - these must not
necessarily be additional State Machine diagrams.

Fig. 29: Example State Machine Diagram “Automatic Teller Start-up”

Initial

Startup

+ entry / "Please Wait!"-Form

Fault

+ entry / send error message

+ do / play "Out of Service" Sequence

Ready

+ do / play "insert card" flash

+ do / play advertisment on mainscreen

Read Card

+ entry / pull_in_card

+ do / show "please wait"

+ do / read track

Return Card

+ entry / display "card defect"

+ entry / push card out

Entering PIN

Sav e Card on Stack

+ entry / pull in card

+ entry / put on stack

+ entry / write protocol

To be continued here!

card reached

stack

dt>30sec

card_is_taken_back
Card_Check [Result=true]

Card_Check [Result=false]

Card inserted

Restart Cmd

end_of_selftest [Result=true]

/send "alive" to server

dt>=3min

end_of_selftest [Result=false]

34 UML-Glossary

Chapter Review

Please identify the correct answers:

1. A State without a noted name is

[a] Non-UML compliant

[b] an incomplete state

[c] an “anonymous” state

2. The start point of the State Diagram

[a] Is the first event which occurs

[b] defines a guard for the first state change

[c] is equivalent to object creation

Correct Answers: 1c, 2c

UML-Glossary 35

Class Diagram
The class diagram is the heart of UML. It is based on the principles of object orientation
(abstraction, encapsulation, heredity, etc.) and due to its versatility can be implemented in all
phases of a project. In the analysis phase it appears as the domain model and attempts to provide
an image of reality. The software is modeled with it in the design phase (data structures), and in
the implementation phase source code is generated (code structures).

Classes and the relationships of classes to each other are modeled in class diagrams. The
relationships can be roughly divided into three categories. The simplest and most general option
is the association. A second relationship which can be modeled is the acceptance of one class into
another class – the so-called Container class. Such relationships are called Aggregation or
Composition. A third option is Specialization or Generalization.

Since a class must model the structure and the behavior of objects which are created from this
class, it can be equipped with methods and attributes. Furthermore, the modeling of base classes
and interfaces can be achieved via stereotypes. Template classes can be implemented in several
programming languages. UML displays such classes as parametrisable classes in the class
diagrams.

Class
A class describes a number of instances which have the same attributes, constraints and
semantics.

Classes are represented by rectangles which either carry only the name of that class, or also the
attribute and operations. The three compartments – Class name, Attributes, Operations – are
each divided by a horizontal line. Class names usually start with a capital letter and are mostly
substantive in singular (collection classes, among others, in plural where applicable).

The attributes of a class are noted with at least their names, and can contain additional data
pertaining to their type, an initial value, attribute values and constraints. Methods are also noted
with at least their name, as well as with possible parameters, their type and initial values, as well
as possible attribute values and constraints.

Fig. 30: Class Example

Scope
The Scope of class elements is labeled with a sign in front of the name. If an element is clearly
visible, a “+” sign is shown in front of the name. Private elements are given the “–“ sign. A “#” in
front of a name means that the class element is labeled with the access attribute “protected”.
Protected is an extension of private; sub-(daughter) classes inherit attributes marked as
protected. A “~“ in front of the name means “package”, a limitation of “public“ - not unlimited
public visibility, but rather limited to the package.

Abstract Class
Instances are never created from an abstract class. This class is intentionally incomplete and
constitutes the basis for further subclasses which can have instances. An abstract class is
illustrated like a normal class, however the class name is set as cursive.

car

+ color: int

- power: int

+ start() : void

- accelerate(int) : void

36 UML-Glossary

Stereotypes
Abstract classes, for example, can be indicated with stereotypes. The specification of the
stereotype appears over the class name in French quotations: « ». Stereotypes can also be made
visible with various colors or by writing the class name in italics.

Fig. 31: Example Stereotypes

Parameterized Classes
A special kind of class is the parameterized class. Here, the type of contained attribute has not yet
been established. Definition takes place when an object in this class is instanced. The graphical
appearance is modified for such classes. The classes rectangle is given a second rectangle with
border at the top in which the variable type is shown.

Fig. 32: Parameterized Class

Object
Objects are the operative units of an object-oriented application. They are created in memory
according to a building plan – the class definition. Every object has its own identity. An object
possesses a specific behavior which is defined by its methods. Two objects of the same class have
the same behavior. Furthermore, objects have attributes which are the same as other objects in
the same class. The state of an object is defined by its values which are saved in the attributes.
Therefore, two objects in a class are equal when the values in their attributes correspond.

Like classes, objects are drawn in the diagram using a rectangle, although the name is
emphasized to differentiate it from classes. The name of the object follows the class name
separated by a colon. If the actual object name has no bearing for the case to be modeled, then it
can also be omitted, whereby only a colon and the class name are shown. As the methods are not
important for the object's presentation, they are not shown.

Fig. 33: Object Example

motor vehicle «abstract»

motor vehicle

par

parameterized class

Golf :car :car

UML-Glossary 37

Attributes
An Attribute is a data element which is similarly contained in every object of a class, and is
represented in every object by an individual value.

In contrast to UML 1.x, UML 2.0 no longer strictly differentiates between Attribute and
Association ends. This means that presentation as Attribute in a class or as navigable Association
is the same.

Every attribute is indicated by at least its name. In addition, type, visibility and an initial value can
be defined. The full syntax is as follows:

[Visibility][/]Name[:Type][Multiplicity][=InitialValue]

Methods (Operations)
A class must have a responsible Method for every message which it receives. A class provides
other classes with functionality via a method. Using messages, or Method Calls, the objects
instanced from the classes communicate with each other and achieve thereby coordination of
their behavior. Objects and their communication via Method Calls are illustrated in the group of
interaction diagrams.

Relationships
There are four different kinds of Relationships between classes, whereby generalization is a
special form which is very similar to the other three – association, aggregation and composition.

Association
An Association represents the communication between two classes in a diagram. The classes are
connected with a simple line. With the help of an arrow, a directional Association is shown.

Every association can be furnished with a name which provides a more detailed description. The
name can also be furnished with a reading direction indicator – a small filled triangle. This
indicator refers strictly to the name and has no relation to the navigability of the association.

On every page of an association, role names can be used to more precisely describe which role the
current objects play in the relationship. Roles are the names of attributes which belong to the
association or one of the involved classes.

In programming language, associations are generally realized in that the concerned classes
contain relevant attributes.

A role therefore represents an attribute. Aside from role names, visibility specifications can be
placed on every side of the association. If, for example, an association end is listed as private (-),
then the object itself, or the object's operations, can utilize the association, whereby neighboring
classes receive no access.

A Directional Association is noted like a typical association, except that on the side of the class to
which navigation is possible – in the navigation direction – is an arrow with open point.
Multiplicity and role names can theoretically also be noted on the side to which navigation is not
possible. They describe a Property which does not belong to a class, but rather an association.

In the following example, the class Customer would receive an attribute "account" as reference to
an object of the class CustomerAccount, and the class CustomerAccount would receive the
private attribute "bpos" with a collection or subclass thereof which references the booking
position objects.

Fig. 34: Association and Composition with all properties

customer CustomerAccount entry line

-bpos

*1

1 belongs to

+account

1

38 UML-Glossary

Many modeling tools use the role names of the relationship for the corresponding automatically-
generated attributes; role names in UML also correspond formally with the corresponding
attributes. Association with navigability is an alternative notation for attribute presentation in
the appropriate class.

Fig. 35: Associations

These relationships are read in the following way:

 An event has a seating plan.

 A seating plan is allocated to a venue.

The arrow shows that communication emerges predominantly from the seating plan (the class
therefore receives a reference to the venue at implementation). The cardinalities are thereby read
before the target classes.

Multiplicity
The Multiplicity of an association indicates with how many objects the opposing class of an
object can be instantiated. When this number is variable, then the bandwidth – or minimum and
maximum – is indicated 3..7 . If the minimum is 0, this means that the relationship is optional
(the relationship is still there, only the number of elements is 0). If the minimum is equal to the
maximum, only one value is written.
In UML he term Cardinality is used to express the concrete number of instances.

Fig. 36: Multiplicity vs. Cardinality

seating plan

location

event

1

1

11

Type

Instantiation

Employee Project

:Employee

:Employee

:Project

:Project

:Project

Concrete Instances

-> "Cardinality"

"Multiplicities"

+works for

1..* *

UML-Glossary 39

The term cardinality has its origin in data modeling – there with the meaning of multiplicity of
UML. Within UML both terms are used to distinguish between the possible number of
instantiations and the concrete number of instantiations. The cardinality describes within an
object diagram the number of associated objects.

Association Class
Classes can also be arranged with each other in combination; when regarding the relationship of
customer, account and bank card, then it becomes clear that a bank card exists for a combination
of a customer and an account - and that is very different than associating the card directly with
the customer and the account. UML provides Association Class notation for this:

Fig. 37: Association Class

A unique property of the association class is that it may only give precisely one instance of the
associated class per reference. For example, there may only be one reference of bank card per
combination of customer and account.

Should several classes be involved, then the association node (n-ary Association) is used:

Fig. 38: Association Node

The n-ary association has its beginnings in data modeling (Entity Relationship Models) and is
implemented in UML semantically identical. All classes involved with the association form a single
unit. This means, for example, that (ticket, date, flight, and passenger) all form a single
component and as a sum have a significant meaning: a role in a specific flight. This significance is
usually expressed in the name of the association (hash).

Objectdiagram

Customer

- Name: string

- CustomerNumber: string

CustomerAccount

- AccountNumber: string

- Balance: decimal

ATM_Card

- CardNumber: string

:Customer :CustomerAccount

:CustomerAccount

:ATM_Card

:ATM_Card

1 *

Passenger

- Name: string

Flight

- FlightNumber: string

Date

- Date: string

SharedFlight

Ticket

- TicketNumber: string

1

+ConnectingFlight

0..1

+Passagier 1 +Datum 1+Flug 1

1

40 UML-Glossary

Important for n-ary association is the setting of multiplicities, or what combinations of object
characteristics are valid. In order to correctly set multiplicities, think for n-1 elements a
multiplicity of 1 and set the multiplicity of the n-th.

For example: A passenger has precisely one ticket for a flight on a specific date. If it is possible
that the passenger may have more than one ticket for the same flight on the same date, then the
multiplicity for Ticket must be greater than 1 (e.g. “*”).

Aggregation
An aggregation is an association extended by the semantically non-binding commentary that the
involved classes are not in an equal relationship, but rather represent a "part of" relationship. An
aggregation should describe how something whole is logically made up of its parts.

Like an association, an aggregation is shown as a line between two classes and is given a small
diamond. This diamond is on the side of the aggregation, or whole. It effectively symbolizes the
container object in which the individual parts are collected. All association notation conventions
are valid.

Fig. 39: Aggregation notation

The Company-Department-Employees example shows that a part (department) can at the same
time also be an aggregation.

Fig. 40: Example Aggregation

Composition
A Composition is a strict form of aggregation whereby the existence of the parts depends on the
whole. They describe how something whole is made up of individual parts. Like aggregation,
composition is shown as a line between two classes and is given a small diamond on the side of
the whole. Unlike that of aggregation, this diamond is filled in.

Fig. 41: Aggregation and Composition

When a class is defined as part of several compositions, such as in the following example, then
this means that both cars and boats have a motor – a specific motor object but which can always
only either belong to a car or to a boat. The decisive characteristic of a composition is that the
aggregated parts will never be shared with other objects. This can also be written into the
diagram using XOR constraint.

whole part
*

consists of

0..1

company department employee
1..*

consists of

11..*

consists of

1

whole part

dependent part

Aggregation

Composition

UML-Glossary 41

Fig. 42: Example Composition

Should the multiplicity for parts (Motor) start from zero (0..*), then the whole may exist without
parts, or can contain as many parts as desired. Should the multiplicity of the whole (car/boat) be
from zero to one (0..1), then that part may also exist without a whole; as soon as that part
belongs to a whole it will no longer be separated and an existence-dependent relationship
exists. Existence dependency means that the part without its whole cannot exist, and when the
whole must be destroyed, then so must all of its parts.

In the following example, an aggregation is modeled between the class Event Plan and the class
Seating Plan. A composition is defined between the classes Seating Plan and Seat. There is
therefore no Seating Plan object without a Seat. The relationships are read in the following
manner:

Fig. 43: Example Aggregation and Composition

 A seating plan has unlimited capacity, but usually only one seat.

 A seat belongs to one specific seating plan.

 Every seating plan belongs to one specific event.

 An event may contain an unlimited number of seating plans.

 The seating plan can also be assigned to another event (Aggregation), but must in any
case always have one event.

 The seat is part of a seating plan; this relationship can never be changed (Composition).

Generalization/Specialization
A Generalization is a relation between a more general (parent) and a more specific (child)
element, in which the specific element provides additional properties but is still compatible with
its general element.
In generalization or specialization, characteristics are hierarchically arranged; this means that
characteristics of general importance are assigned to elements of a more general nature, and
more specialized characteristics are assigned to elements which are subordinate to more general
elements. The characteristics of the parent elements are passed on ('handed down') to the
appropriate sub-elements. A sub-element thus carries its specified characteristics as well as the
characteristics of its parent elements. Sub elements therefore inherit all characteristics of their
parent elements and can extend these further or overwrite them.

Hierarchical inheritance trees are modeled in this way. Inheritance trees are an important design
element in the modeling of software architectures. The following example models how events
can be modeled as in-house or external.

car engine boat

«invariant»

{XOR}

1 0..110..1

seat

event

seating plan

*

1

1..*1

42 UML-Glossary

Fig. 44: Example Inheritance

Dependencies
A dependency is a relationship from one relationship of one (or more) source element(s) to one (or
more) target element(s).

The target elements are required for the specification or implementation of the source elements.
A dependency is shown as a dashed-line arrow pointing from the dependent to the independent
element. Additionally, the type of dependency can be more precisely specified using a key word or
stereotype.

Since, in a dependency relationship, the source element requires the target element for its
specification or implementation, without the element it's incomplete.

Dependencies can have differing causes. Some examples are:

 One package is dependent upon another. Here, for example, the cause can be due to the
fact that one class in the one package is dependent upon another class in the other
package.

 A class is using a specific interface of another class. When the provided interface is
changed, the class using this interface also requires changes.

 One operation is dependent upon another class; for example, the class is used in an
operation parameter. A change in the class of the parameter possibly requires a change
in the operation itself.

Stereotype Meaning
«call» Stereotype for Usage Dependency (Usage)

The Call relationship is defined and specified from one operation to another
operation so that the source operation calls up the target operation. A class may
also be chosen as a source element. This means, then, that the class contains an
operation which calls up the target operation.

«create» Stereotype for usage dependency (Usage)
This dependent element creates copies of the independent element. The Create
relationship is defined between classes.

«derive» Stereotype to define abstraction relations (Abstraction)
This dependent element is derived from the independent element.

«instantiate» Stereotype to define type instance relations (Usage)
This independent element created copies of the independent element. The
relationship is defined between classes.

«permit» Keyword for the Permission relationship (Permission)
This independent element has the permission to use private attributes of the
independent element.

«realize» Keyword for the Realization relationship (Realization)
This independent element implements the independent element, for example an
interface or an abstract element; or an element must implement a requirement.

«refine» Stereotype to define semantic specialization (Abstraction)
This dependent element is on a more precise semantic level than the
independent element.

guest

performance

Inhouse

event

UML-Glossary 43

«trace» Stereotype to define traces between semantic specializations (Abstraction)
This dependent element leads to an independent element to be able to follow
semantic dependencies, for example from a class to a requirement or from a use
case to a class. Also used between a test case and the tested element.

«use» Key word for Usage relationship
This dependent element uses the independent element for its implementation.

The Abstraction relationship is a special dependency relationship between model elements on
various abstraction levels. The relationship is noted as a dependency relationship. They cannot be
confused, however, as the abstraction is always used together with a stereotype. UML defines the
standard stereotypes «derive», «trace» and «refine».

A mapping also always belongs to an abstraction relationship showing how the involved
elements interact (Mapping). Specification can be formal or informal. In spite of arrow direction,
an abstraction relationship can also be bidirectional according to stereotype and mapping, e.g.
the often-used «trace» relationship.

A special abstraction relationship is the Realization relationship. It is a relationship between an
implementation and its specification element.

The Substitution relationship is a special realization relationship. It describes that examples of the
independent elements can be substituted at run time from the dependent elements, for instance
due to similar interface implementation.

The Usage relationship is a special dependency relationship. The difference to the dependency
relationship is that the dependency limits itself only to the implementation and is not valid for
the specification. This means that the dependent element requires the independent element for
its implementation. Therefore, there can be no usage relationships between interfaces, but rather
the dependency relationship.

The permission relationship is a special dependency relationship which issues the dependent
element access rights to the independent element.

Interfaces
Interfaces are special classes which specify a selected part of the externally visible behavior of
model elements (mainly of classes and components) with a set of characteristics (features).

The Implementation relationship is a special realization relationship between a class and an
interface. This class implements the characteristics specified in the interface.

Interfaces are noted like classes; however, they incorporate the key word «interface».

A differentiation is made between available and required interfaces. An available interface is
offered by a model element and can be used by others. A required interface is an interface which
is requested by another model element.

Interfaces specify not only operations, but also attributes. Interfaces may also have appropriate
associations to other interfaces or classes.

Classes which want to implement an interface must implement all operations defined in the
associated interface. Concerning the attributes defined in the interface, the implementing class
must behave in such a way as though it owns the attributes. In the simplest case, it actually
implements the attributes. It is also enough, for example, to offer only the appropriate get() and
set() methods.

A class can implement many interfaces and can furthermore contain additional properties, or put
another way: As a rule, an interface describes a subset of the operations and attributes of a class.

A special realization relationship exists between the implementing class and the interface – the
implementation relationship (key word «realize»).

44 UML-Glossary

Fig. 45: Example interface

Given the current specification, it is not clear if, for the implementation relationship, the dashed
arrow with keyword «realize» is to be used, or the dashed Generalization relationship as in UML
1.x. We assume here the latter, as this alternative is also much better for practical work.

The implementation relationship is noted with a special arrow. The other way to show the
implementation of an interface is a small, unfilled circle connected by a line with the class that
provides the interface. This should symbolize a plug. Next to this, the name of the interface is
given; it corresponds to the name of the associated interface.

When drawing the arrow, the possibility exists to read the operations and attributes requested
via the interface. The short notation does not indicate the operations and attributes requested by
the interface, only the name of the interface. You may still use the 1.4 Notation, shown own the
right side alternatively. The benefit: Available methods can be shown directly in the diagram.

Fig. 46: Notation for Available/Provided Interface

For a requested interface, the requesting element has a usage relationship to the interface. The
existing short notation is an open semicircle on a stem which is intended to symbolize a grabbing
hand.

Fig. 47: Notation for Requested/Used Interface

Opel Astra

+ velocity

+ direction

+ steer()

+ changeGear()

+ brake()

+ accelerate()

+ enableAutoPilot()

«interface»

car

+ velocity

+ direction

+ steer()

+ changeGear()

+ brake()

+ accelerate()

«realize»

Opel Astra

Car

Opel Astra«interface»

Car

equivalent to

Driver

Car

equivalent to

Driver«interface»

Car

«use»

UML-Glossary 45

Allocation and request of an interface can be shown by the combination of both short notations
by sticking the plug into the socket.

Fig. 48: Notation Options for Interfaces (Usage and Realize)

Warning: The last drawing version uses the symbol Assembly. But an assembly belongs to the
category connector! You cannot use linking; the name can only be inserted textually! A connector
cannot be an instance of an element, so there will be no feature to set the instance classifier!
Avoid this kind of notation!

Since interfaces are special classes, all corresponding rules apply. Generalization is one option, for
example.

Fig. 49: Extension of Interfaces

The following image shows that the class “Opel Astra” implements the “car” interface. The car
interface requests four operations – steer(), shift(), brake() and accelerate() – as well as two
attributes, "velocity" and "direction". The class “Opel Astra” fulfills the requirements for this
interface, since it is has, among other things, the four requested operations.

user

interface-A

provider

interface-A

user provider

equivalent to

interface-A

«interface»

car

velocity

direction

steer()

changeGear()

brake()

accelerate()

«interface»

luxury car

call()

controlSeatHeating()

enableNavigationSystem()

chauffeur
driver

1

46 UML-Glossary

Fig. 50: Example of Implementation of Interfaces

Symbols
The following tables contain the symbols of the class diagrams.

Name/Symbol Use

Class

A class is indicated on a diagram with a rectangle in which the name of
the class is shown. The class symbol can be extended by an area to
indicate the attributes and the methods. For parametrisable classes, the
class symbol is extended by a rectangle which contains the name of the
parameter.

Object

Objects are indicated by a rectangle in which the name and the class of
the object are underlined. Both are separated by a colon. The class name
can be left off if the object can also be classified without a class name.
An anonymous object (without name) is shown with only a colon and
the class name.

Package

Packages include multiple classes which are grouped there for a specific
task. The graphic for a package symbolizes an index file card on which
the package name is shown.

Assoziation

If two classes are in a relationship, this is shown by the connection of
both classes by a solid line.

The cardinality can be entered on the line near the class symbol.

Furthermore, the names of the relationship and role can still be shown
(Roles: Accused, Accuser; Relationship Name: Accuses).

You can indicate the preferred direction of communication using an
arrow. (Navigation)

chauffeur Opel Astra

car

racedriver

car

Manager

luxury car

Jaguar

- velocity

- direction

+ steer()

+ call()

+ changeGear()

+ controlSeatHeating()

+ brake()

+ enableNavigationSystem()

+ accelerate()

luxury car

driver 1

cd alle Elemente

Class

Class

- Att1: int

+ Op1() : void

cd alle Elemente

Object

:Class

Object :Class

cd alle Elemente

Package

cd alle Elemente

A B

cd alle Elemente

A B

1..* 1

cd alle Elemente

A B

1..*

+Angeklagter

klagt an

1

+Anklägercd alle Elemente

A B

UML-Glossary 47

Name/Symbol Use

Aggregation

Aggregation is shown with a line, on the end of which is a diamond
pointing to the container class (Class B can manage objects of Class A).
The diamond is not filled. Roles, cardinality and desired direction of
communication are entered at the association.

Composition

Unlike aggregation, composition is shown with a filled diamond.
Further symbols correspond to aggregation.

Generalisation

The symbol is an arrow pointing to the base class and connecting it to
the derived class. The arrow is not filled (class A inherits from class B).

Realisation

When a class imports an interface, the link is shown by an arrow on a
dashed line.

Example
All performances in a theatre are managed using an event plan in a ticket system. The class event
calendar is connected with the class seating plan via a composition. In this way, the event
calendar class can manage objects of the seating plan class. Every seating plan contains the
theatre’s seats, and these are sold via the seating plan. The class seating plan manages the class
seat via an additional composition. The navigation points in the direction of the class seat. The
class seating plan communicates with the class event, where the data from the performances are
stored, e.g. date and time. Entries for the venue, e.g. the name and the address, are stored in the
class location. Navigation is carried out from the class seating plan.

Fig. 51: Example Class Diagram

cd alle Elemente

A B

cd alle Elemente

A B

cd alle Elemente

A B

cd alle Elemente

A B

«realize»

event seating plan location

seat

event calendar

1..*

1

1..*

1

1 111

48 UML-Glossary

Chapter Review

Please find the correct answers:

1. A class in UML is shown as

[a] a rectangle with three areas: Class Name, Methods, States

[b] a three-tone rectangle with Class Name, Parameters, Methods

[c] a rectangle with three areas: Class Name, Attributes, Methods

2. The symbol placed in front of an attribute

[a] “#” indicates attributes which are outwardly visible as properties

[b] “+” means general visibility (also outside of the class)

[c] “-“ indicates attributes with simple data types

3. A domain model is

[a] the depiction of reality in the analysis phase

[b] a model based on attributes and methods of classes

[c] a basis for the creation of source code

4. In a composition

[a] the classes are linked together as individual parts

[b] one class is an inseparable component of the others

[c] one class attribute and methods are inherited from the others

5. In Generalization

[a] the arrow shows the connection to the special class

[b] the special class methods and attributes are inherited from the general class

[c] equivalent attributes are passed between classes and filled.

Correct answers: 1c, 2b, 3a, 4b, 5b

UML-Glossary 49

Package Diagram
A Package is a logical aggregation of model elements of any type, and with which the entire
model is organized into smaller, more manageable units.

A package defines a namespace; i.e. the names of the elements contained within a package must
be clear. Every model element can be referenced in other packages, but can belong to only one
(home) package. Packages can contain various model elements, such as classes and use cases.
They can be hierarchically organized; i.e. for their part contain packages again.

A model element such as a class can be used in various packages; however, every class has its
home package. In all other packages, it is simply referred to by its qualified name

PackageName::ClassName

Dependencies thereby arise between the packages; i.e., a package utilises the classes of another
package.

Fig. 52: Example Package Diagram

A package is shown in the form of a file register card. The name of the package is in this
symbol. If modeling elements are shown within this symbol, the name is on the register tab;
otherwise, within the large rectangle. Stereotypes can be noted above the package name.

If a task is to be distributed to several developer groups, a division into packages can be used and
each group given such a package for handling. To ensure problem-free combination of the
packages later on, an interface is stipulated whereby at first only the name of the interface is
necessary. The functions contained within the package are called up via the interface. In this way,
the package can be appropriately tested and subsequent cooperation can be guaranteed with
additional packages. Guaranteed means here that the defined resulting values for the provided
input parameter are delivered for the functions implemented in the package.

The interaction of system packages is shown in a package diagram in which one can also model
the internal structure of a package.

contract

rating

property

life

product partner

50 UML-Glossary

Graphical Elements

Name/Element Use

Package

This symbol for a package is reminiscent of a file register card. The package
name is shown within this symbol. Should you wish to model inter-package
communication, the package name can be placed in the rectangle attached
to the top.

Communication

Communication among the packages is shown with an arrow which runs
along a broken line. The arrow starts from the package from which
communication predominantly originates.

Generalisation

Should one package inherit from another package, the symbol for
generalization is applied. The involved packages are linked by an arrow,
whereby the arrow points to the package from which is inherited.

Include (Nesting)

Using this symbol, package arrangement can be modeled from the
superordinate package, whereby the “Include” symbol is placed on the
symbol of the superordinate package. The subordinate packages are linked
with this symbol by a solid line.

cd alle Elemente

Package

UML-Glossary 51

Chapter Review

Please identify the correct answers:

1. In a package

[a] one finds only the collected classes and objects of a component

[b] no additional sub-packages may occur

[c] any number of elements may be combined

2. A Namespace

[a] is the area in which all elements must have a distinct name

[b] is noted with vertical channels

[c] is separated by a colon after the object name

Correct Answers: 3c, 4a

52 UML-Glossary

Interaction Diagrams
An interaction describes an array of messages which are exchanged by a selected number of
participants in a chronologically-limited circumstance.

UML 2.0 specifies three different diagrams for the illustration of interactions:

 Sequence Diagrams emphasize the order of message exchange

 Communication Diagrams emphasize the relationships among participants

 Timing Diagrams emphasize the state change of participants against time and the
exchanged messages

Sequence Diagram
A Sequence Diagram is primarily concerned with the chronological progression of messages. The
messaging sequence corresponds to its horizontal position in the diagram. When an object is
created, and when and to what object information is sent, are all determined here.

The participating objects are represented by a rectangle and a dashed vertical line. Both together
are called a Lifeline. Messages are shown using arrows between the Lifelines. Time progresses
from top to bottom. The chronological progress of messages is thereby highlighted.

The sequence diagram in the following illustration shows an interaction among three objects. It is
important that the entire diagram represents an interaction, and that an interaction is not only a
single message exchange.

Fig. 53: Simple example of a sequence diagram

In the heading of the Lifeline is the (optional) element name with the associated class in the usual
declaration notation: name : type.

ExecutionOccurence
When messages are exchanged between Lifelines, a Behavior must also be implemented in the
associated elements. This is shown by the elongated rectangle on the Lifeline. These rectangles
represent the so-called ExecutionOccurence. Start and End of ExecutionOccurence are defined via
the so-called Event Occurrence. Put more simply, the sending and receiving of messages
determines the start and end of the ExecutionOccurence.

Message Types
The transfer of a message is noted using arrows. Labeling of messages is carried out using the
names of the corresponding operations. UML recognizes various types of messages which are
demonstrated using various kinds of arrow notation. In the following illustration, the various
message types and corresponding notation forms are shown.

:customer :ATM Server

put in card()

check card(kartendaten) :ok

UML-Glossary 53

 Synchronous Messages are represented by filled arrowheads. Synchronous means that the

caller waits until the called behavior has ended. The Reply Message to a synchronous call
is represented by a dashed line and open arrow point.

 Asynchronous Messages have an open arrow point. Asynchronous means that the caller
does not wait, but rather proceeds immediately after the call. There is accordingly no
answer arrow to asynchronous calls.

 Lost Messages have an open arrow point in the direction of a filled circle. The circle is not
linked to a Lifeline. When a message is lost the sender is recognized, but not the receiver.

 Found Messages have an open arrow point. The line emanates from a filled circle. The
circle is not linked to a Lifeline. When a message is found the receiver is recognized, but
not the sender.

 A message which creates a new Element is represented by a line and open arrow point.
The Lifeline which belongs to the Element starts first on this place in the diagram; e.g.,
the arrow points to the Lifeline header.

Fig. 54: Notation Forms of the various Message Types

Repeated message sending is modeled by adding the * symbol, in which case the message has the
* symbol placed in front.

The message is noted on the message arrow with the following syntax:
[attribute =] name [(arguments)] [: return value]

Whereby

 “attribute” can be a local variable of the interaction, or an Element of a Lifeline. The
attribute allocation is only used in synchronous messages with return value.

 “name” is the name of the message to be called, or the name of the signal to be sent. The
sending of a signal is always as asynchronous character.

 “arguments” is a comma-separated list of parameter values transferred to the message.

If an object is created via the setting of a message (e.g. by calling the method “new”), then the
Lifeline of this object begins at this position. The destruction of an object is represented by a cross
on the Lifeline.

S T

U

asynchronous()

call(synchron)

return()

lost message()

found message()

new()

54 UML-Glossary

Symbols
The following table contains the sequence diagram symbols.

Symbol/Name Use

System Border

The System Border isolates the concerned part of the program from the
rest of the program. It usually serves as the start point of the triggering
method call. Program flow is not always triggered by an object outside
of the concerned area, so that in this case no system limit must be set.

Object

An object is shown by a rectangle containing the name. Underlining of
the name may be omitted so that no confusion with the class name can
occur. Classes are not displayed in this diagram. Objects are shown along
the upper sheet edge.

Lifeline

Every object is on a vertical line - the Lifeline. An object’s lifeline grows in
the direction of the lower sheet edge. For objects which already exist at
the start of the program section, the object symbols are drawn on the
upper sheet edge. For objects which are re-created within the program
section, the symbol is drawn at the level of the method call in the course
of which the object was created.

Object Activity

If an object is involved in a method call, it is active. The Lifeline thickens.
If an object calls its own method, the Lifeline thickens again. These
activities are not always drawn.

Method Calls

When an object calls a method of another object, this is symbolized by a
continuous arrow which points to the object from which the method
was called. The method name is placed on this symbol. This name can be
added to the parameters list in parentheses.

Return of a Method

In principle, only the method calls are shown in the sequence diagram.
Should you nevertheless wish to plot method returns, this can be done
with an arrow and a dashed line.

Object Creation

If a method creates an object, the method's arrow ends on the object's
rectangular symbol. The Lifeline begins at this symbol.

Object Destruction

If an object is destroyed when a method is called, the object's Lifeline
ends with a cross below the method call symbol.

Example
A theatre’s ticket system allows tickets to be sold out of the seating plan on an Internet website.
The seating plan manages the seats of a given event.

When a seat is selected by a user, the concerned object :seat calls the “buy” method of the
“:order” object and transfers a reference to itself in the parameter. The order class object calls the
method “isFree(seat)” of the Seating Plan class to check whether the seat transferred into the
parameter is free. If the seat is still free, the Seating Plan object calls its own method, “reserve”.
The seat is thereby reserved for the time being.

After this has taken place, the invoice for the seat is created. The seating plan object then calls the
“book” method with the chosen seat as parameter. The “book” method belongs to the object
:order. This represents a list of the invoice line items - which is not modeled here. After the invoice

UML-Glossary 55

line items have been compiled by the object :sales, it calls the “createInvoice” method of the
object :order. To notify the Internet ticket system user of the success of his purchase, the Order
object calls the method “confirmed” of the class Seat. The visitor confirms the order, and the
method “confirmed” returns with the value “true”. The order is completed.

Fig. 55: Example of a Sequence Diagram

:seat :seating plan:order :sales

buy(seat)

isFree(seat) :

bool

reserve(seat)

book(seat)

createInvoice(seat)

confirmed() :bool

56 UML-Glossary

Chapter Review

Please identify the correct answers:

1. Interaction diagrams describe

[a] messages which exchange objects within a concerned time frame

[b] the communication between attributes of objects

[c] interfaces to users and other systems

2. ExecutionOccurence is shown by

[a] a dashed line under an object

[b] a thickening of an object's Lifeline

[c] an arrow with an open point which connects two object Lifelines

3. A message for which the caller does not await an answer

[a] is called an “asynchronous” message

[b] is not modeled in the UML diagram

[c] is marked by an “X” on the object's Lifeline

4. New objects in a Sequence Diagram are

[a] modeled only on the upper page edge, and live during the entire interaction

[b] are modeled on the position of the first method call

[c] are modeled with the help of the “lost message”

Correct Answers: 1a, 2b, 3a, 4b

UML-Glossary 57

Communication Diagram
The Communication Diagram corresponds to the UML 1.x Collaboration Diagram. It has been
renamed to avoid the confusion caused by the term “Collaboration”, as UML also has the
modeling element “Collaboration” which has nothing to do with a Collaboration
(Communication) Diagram.

The Communication Diagram is a different approach to displaying the circumstances of a
sequence diagram. This diagram gives special attention to the cooperation of the interconnected
objects. Selected messages are used with which the chronological communication sequence
between the objects takes place. It thereby compiles the conclusions of the sequence diagram in a
more compact form.

In the following illustration, one can clearly see that the communication diagram emphasizes the
relationships between the involved parties, and not the chronological progression of message
exchange like the sequence diagram.

Fig. 56: Example of the “Identify Authorization” Communication Diagram

Graphical representation is a rectangle which contains the object name and the respective class.
A colon separates both names. The objects are linked by association lines. A small arrow shows
each message direction from sender to receiver. When arguments are transferred with the
message, these are executed. Possible return values can also be output in the form:

answer := Messagename (list of Parameters)

In order to model the chronological sequence, the messages are given numbers. One message can
trigger further messages. These receive sub-numbers of the triggering message (e.g. 1.2).

If a message is repeatedly triggered, this iteration can be modeled using a * character in front of
the message name.

Objects which are created within the illustrated scenario can be indicated using the stereotype
new. Objects which are destroyed within the illustrated scenario are indicated using the
stereotype destroy. Objects which are created and destroyed within the scenario receive the
stereotype transient.

:customer

:ATM Server

1: put in card()

1.1: check card(kartendaten) :ok

58 UML-Glossary

Symbols
The following table contains the Communication Diagram symbols.

Symbol/Name Use

Object

This rectangle is the symbol of an object and contains the object names. No
confusion with classes may occur, so the name must not be underlined.

Communication

If two objects communicate with one another via a method call, this link is
shown with a solid line connecting both objects.

Communication
Direction

In addition to the connecting line, after the method name an arrow shows to
which object the method belongs. The arrow points to this object.

Communication
Line Labeling

This line is labeled with the method name and the parameter list. Numbers
placed in front of the method name indicate the chronological order of
method calls, separated by a colon. You can enter the method numbers in a
condition which are, as a precondition, already being processed. The * symbol
in front of the method name indicates a repeat of that method. The
condition for repetition can be entered after the * symbol.

Example
This example models the purchase of a ticket via the Internet. The Internet customer selects a
seat on a theatre’s website, thereby calling the “select” method. The interaction is started. The
object :seat calls the “buy” method of the Order object and transfers a reference to itself in the
parameter. The :order object calls the method isFree of the object :seating plan. On the one hand,
this method calls the “reserve” method, and on the other hand the “book” method. They
therefore differ only in their sub number. The Seating Plan object calls the method “book” of the
:sale object. This object calls the method “createInvoice” of the object Order and transfers the
invoice line item of the booked seat. After the invoice has been created by the object :order, the
Internet customer is informed of the successful booking, whereby the method “confirmed” is
called which queries and returns the customer's confirmation.

Fig. 57: Example of the “Ticket Purchase via Internet” Communication Diagram

cd Interactions

Object

:order

:seat
:seating plan

:sales

:internet customer

1: choose()

1.1: purchase(Seat) 1.2: isFree(Seat)

1.3: reserve(Seat)
1.4: book(Seat)

1.5: create Invoice(Seat)

1.6: confirmed() :answer

UML-Glossary 59

Sequence Diagrams vs. Communication Diagrams
Sequence and Communication Diagrams are very similar and can also be merged into several
UML Tools. However, due to the greater expressiveness of sequence diagrams in UML 2.1 it is no
longer possible to substitute every sequence diagram with a communication diagram. The focus
of the sequence diagram is on the chronological aspect, while for the communication diagram
focus is on the relationships between the objects. The greatest advantage of the sequence
diagram - and at the same time greatest disadvantage of the communication diagram - is the
clearly visible chronological sequence which can principally be visualized in communication
diagrams with a numbering scheme, but much less visibly. In this case the order of execution
must not be set right away, making the creation of a sequence diagram somewhat tricky at times.
On the other hand, in a comprehensive communication diagram the order is not easily readable.
The reader must use the Search function to find out whether 1.1 2, 1.2 or even 1.1.1 follows.

60 UML-Glossary

Chapter Review

Please identify the correct answers:

1. Sequence and Communication Diagrams

[a] have nothing to do with each other

[b] exchange messages via “lost” and “found” messages

[c] are similar and can be substituted in some cases using various tools

2. The chronological order in a communication diagram is

[a] visible via a numbering scheme

[b] visible via the names of the method calls

[c] more visible than in a sequence diagram

3. The direction of communication flow between objects in a communication diagram

[a] is modelled using an open arrow point on the association

[b] is labelled with dashed (broken) and solid (unbroken) messages

[c] is symbolised by a closed arrow point next to the method name

4. In interaction diagrams, object names are

[a] always underlined when shown with classes due to danger of confusion

[b] often shown not underlined as there is no danger of confusing them with classes

[c] modeled with no underline but therefore always with package and class name in front

Correct Answers: 1c, 2a, 3c, 4b

UML-Glossary 61

Interaction Overview Diagram
The Interaction Overview Diagram is new in UML 2.0/2.1. It merely represents a mix of activity
and sequence diagrams, whereby activity blocks can be mixed into a sequence diagram, and vice
versa. Since it contains no other innovations, no further details will be explored here.

The following example shows the “Execute Bank Transfer” process, whereby the main diagram
here is an activity diagram and an action (save order) is more precisely described using a
sequence diagram.

Fig. 58: Example Interaction Overview Diagram

enter recipient

enter bank-code and

account-number

enter amount

enter date

ActivityInitial

ActivityFinal

sd Store Order

:capture order :order

save()

validate()

sign(TAN)

validateTAN()

62 UML-Glossary

Component Diagram
Component diagrams show the interaction of component relationships. A component is an
executable and exchangeable software unit with defined interfaces and individual identities. A
component is, like a class, instanceable and capsules complex functionality.

Fig. 59: Notation of Component Diagram

The component Component2 provides functionality via its interface. Component1 communicates
over the interface Interface1 provided by Component2 and utilises its functionality.

Symbols
The following table contains the component diagram symbols.

Name/Symbol Use

Components

The component symbol is an arrangement of three rectangles. Two rectangles
are drawn on the left side of the third, larger rectangle - where the name of the
component is located. Components completely fulfill the tasks of an
autonomous area for which it was developed.

Interface

A component can provide an interface. This is where administered access to
component functionality takes place. Interfaces make these elements
exchangeable.
An interface is shown with a circle. This circle is linked to the class, the package
or the component by a solid line. The name of the interface is given next to the
symbol.

Dependency

This arrow on a dashed line symbolizes access to the interface. The arrow points
to the interface symbol circle. It can also point directly to a component when
access does not take place via the interface.

Component1 Component2

Interface1

UML-Glossary 63

Example
In this example, four components are linked to an application to show database data in a
window. The database access component is responsible for the establishment, management and
interruption of database access. It provides methods via an interface over which the data
container component can request data from the database.

The data container component manages the requested data sets. At the same time, a transaction
is started for each data transfer via the transfer management component. The component for
graphical representation calls the data sets via the data container component interface and
shows these on the screen.

Should the user alter the data, the component transfers these changes to the data container
component. The altered data are written by these in the database via the connection component
and the new data are verified over the Data Transfer component, then the started transaction
ends.

Fig. 60: Example Component Diagram

User Interface

Data Container

Data Transfer

DBConnection

64 UML-Glossary

Deployment Diagram
Dependencies between nodes, the nodes themselves, their contents and communication are
shown in this diagram. A node is a physical unit which possesses storage capacity and computing
power (such as a PC) on which further components are run. These nodes are drawn as blocks.
Components or processes can be drawn within these blocks. Images which graphically represent
these nodes may also be used instead of blocks. Distribution diagrams show which components
and objects run on which nodes (computers, processes), i.e. how these are configured and which
communication relationships exist.

Symbols
The following table contains the Deployment Diagram symbols.

Symbol/Name Use

Node

A Node is represented by a block. The label placed within the block contains the
name of the node, e.g. the name of a computer, a client or a process name.

Subsystem

If an application is carried out in a node's memory storage, this application is
modeled as a node instance. To differentiate with the node symbol, the label
within the block is underlined. This symbol is inserted into the symbol for the
node on which the sub-process is running.

Component

A Component is in scope smaller than a subsystem but assumes application
tasks for a specified application range. The Component symbol is inserted into
the symbol of the node on which the component is installed.

Component
Instance

Component Instance is a general term for specific objects, the classes of which
belong to the component's data structure and are instanced by it. This symbol
does not differ from the component symbol. Differentiation to the component
symbol is achieved in that the name of the instance is underlined. The symbol
is inserted into the component symbol's instance which it represents.

Association

Relationships between nodes are shown with a solid line which links the nodes.

dd Deployment

Node

dd Deployment

myNode :Node

dd Deployment

Component

dd Deployment

myComponent :

Component

UML-Glossary 65

Example
A cinema's ticket data can be accessed via a ticketing system using various applications. The data
are on a central server which is networked with other PC's and connected to the Internet. A
component for the administration of the database is installed on the server. The database server
Interbase is set up on this server.

 Box office sales are processed via a PC in the box office area. In order that this PC can
access the data quickly enough, a client application is developed which is especially
adapted to the requirements of box office sales.

 The system administrator has a PC for its tasks, e.g. in bookkeeping. He also has a client
application which enables him to create and evaluate events.

 The pre-sales department is driven with its own client application which is connected to
the server via the Internet.

 The Internet customer calls up data from the ticket system from a PC. A ticket system
client application tailored to the needs of this customer is required for this procedure.

Fig. 61: Example Deployment Diagram

Ticketsystem Server

box office

system administrator

advance sale

internet customer

Interbase Server

Database

Administration

Ticket-Client box

office

Ticket-Client

Maintenance

Ticket-Client

advance sale

Ticket-Client

Internet

66 UML-Glossary

Chapter Review

Please identify the correct answers:

1. The Interaction Overview Diagram

[a] is a mix of communication and sequence diagrams

[b] represents nodes and the subsystems found on them

[c] is a mix of activity and sequence diagrams

2. To model capsuled software units with defined functionality,

[a] the instanced classes of the class diagram can be used

[b] one utilizes components and interfaces in the component diagram

[c] the best way is to implement packages and associations

3. An interface provided by a component

[a] allows access to the functionality of the component

[b] is symbolized by a large rectangle with two small rectangles

[c] helps to keep system components unique by way of their names

4. A node in a Deployment diagram is

[a] a physical unit which possesses storage capacity and computing power

[b] a point at which information converges and is stored

[c] a unit in which a finished software product can be subdivided

Correct Answers: 1c, 2b, 3a, 4a

UML-Glossary 67

Timing Diagram
The Timing diagram is primarily implemented in hardware-oriented programming or in
chronologically-critical organization projects to analyze processes for optimal flow using a time
line.

The following illustration shows a time diagram. Here, emphasis is placed on the state of those
involved with respect to a timeline.

Fig. 62: Example Time Diagram

Hint: In opposition to the timing diagram a sequence diagram has no linear time scale. But you
may use timing-arrows there expressing desired timing relations. Due to this you may prefer to
use sequence diagrams.

Composite Structure Diagram

The internal structure of a class can be described with the Composition Structure Diagram. This
diagram is new in UML 2.0/2.1. At first glance, the diagram can be easily mistaken for a
communication diagram. The following illustrations show a composition structure diagram
and an associated class diagram with compositions. The assertions of both diagrams are
equal.

Fig. 63: Composition Structure Diagram and equivalent Class Diagram

:A
T

M

active

check PIN

wait for PIN

idle

enter PIN

PIN ok

:c
a

rd
 r

e
a

d
e

r

valid card

check card

card OK

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

:A
T

M

active

check PIN

wait for PIN

idle

enter PIN

PIN ok

:c
a

rd
 r

e
a

d
e

r

valid card

check card

card OK

car

Rad

RadMotor

car

engine wheel

rear

2

1

front

2

1

1

1

1

drive

21

drive rear

2

front

2

68 UML-Glossary

Object Diagram
The Object diagram holds a certain similarity to the class diagram but with the decisive difference
that, here, only instances and no classes are displayed. It shows a particular detail of the program
during runtime. The individual objects are shown, along with the links and also the multiplicities.
For example, this diagram type is implemented during readjustment of errors in the running
system. When a particular software behavior occurs under specific conditions, this can be
described using the Object diagram by showing the relevant attributes for this circumstance and
their values in the objects.

The following example shows a class diagram to the left and the corresponding object diagram to
the right.

Fig. 64: Example of Object Diagram (right) and corresponding Class Diagram

Computer Repository

ws101 :Computer ws104 :Computer

nw :Repository

UML-Glossary 69

Chapter Review

Please identify the correct answers:

1. The Timing Diagram is not

[a] implemented in hardware-oriented programming

[b] used for the analysis of time-critical organization projects

[c] to be referred to as a representation of a user's chronological sequence of activities

2. The relevant relationship which is cancelled using the Composition Structure diagram

[a] is called Composition and is found in the Class diagram

[b] is called Collaboration and is found in the Component diagram

[c] is called Composition and is found in the Structure diagram

3. An Object diagram helps to

[a] find errors in a system which occur during runtime

[b] illustrate the messages sent between objects

[c] achieve an overview of the system environment

Correct Answers: 1c, 2a, 3a

70 UML-Glossary

Images
Fig. 1: Forward, Reverse and Round-Trip Engineering ... 5
Fig. 2: Historical Development of UML.. 7
Fig. 3: Diagram Frame Example .. 8
Fig. 4: Overview of UML Diagrams ... 8
Fig. 5: Use Case Diagram.. 11
Fig. 6: Notation of Actors ... 12
Fig. 7: Notation of use cases ... 12
Fig. 8 System ... 12
Fig. 9 Multiplicity and active/passive actors .. 13
Fig. 10: Example of «include» relationship ... 14
Fig. 11: Example «extend» relationship ... 14
Fig. 12: Example «extend» with extension points and condition ... 15
Fig. 13: Generalisation of Use Cases ... 15
Fig. 14: Generalisation of Actors .. 15
Fig. 15: Notes in Diagrams .. 16
Fig. 16: Example of a Use Case Diagram.. 17
Fig. 17: Example of an Activity, “Production of Sixpacks” .. 19
Fig. 18: Control Flow / Object Flow ... 20
Fig. 19: Parallelization and Junction – implicit vs. explicit ... 21
Fig. 20: Merging.. 21
Fig. 21: Synchronization = Join ... 22
Fig. 22: JoinSpec ... 22
Fig. 23: Calling an Activity by an Action ... 23
Fig. 24: Structured (composite) activities .. 23
Fig. 25: Send / Receive .. 24
Fig. 26: Interrupt Region .. 24
Fig. 27: Example of Activity: Prepare for Party ... 28
Fig. 28: Example State Machine Diagram ... 31
Fig. 29: Example State Machine Diagram “Automatic Teller Start-up” .. 33
Fig. 30: Class Example ... 35
Fig. 31: Example Stereotypes .. 36
Fig. 32: Parameterized Class ... 36
Fig. 33: Object Example .. 36
Fig. 34: Association and Composition with all properties .. 37
Fig. 35: Associations .. 38
Fig. 36: Multiplicity vs. Cardinality .. 38
Fig. 37: Association Class ... 39
Fig. 38: Association Node ... 39
Fig. 39: Aggregation notation ... 40
Fig. 40: Example Aggregation ... 40
Fig. 41: Aggregation and Composition .. 40
Fig. 42: Example Composition .. 41
Fig. 43: Example Aggregation and Composition ... 41
Fig. 44: Example Inheritance... 42
Fig. 45: Example interface ... 44
Fig. 46: Notation for Available/Provided Interface ... 44
Fig. 47: Notation for Requested/Used Interface .. 44
Fig. 48: Notation Options for Interfaces (Usage and Realize) .. 45
Fig. 49: Extension of Interfaces .. 45
Fig. 50: Example of Implementation of Interfaces.. 46
Fig. 51: Example Class Diagram ... 47
Fig. 52: Example Package Diagram ... 49
Fig. 53: Simple example of a sequence diagram ... 52
Fig. 54: Notation Forms of the various Message Types ... 53
Fig. 55: Example of a Sequence Diagram .. 55
Fig. 56: Example of the “Identify Authorization” Communication Diagram ... 57
Fig. 57: Example of the “Ticket Purchase via Internet” Communication Diagram 58
Fig. 58: Example Interaction Overview Diagram ... 61
Fig. 59: Notation of Component Diagram ... 62
Fig. 60: Example Component Diagram .. 63

file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651133
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651134
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651138
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651139
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651140
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651143
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651145
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651147
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651149
file:///C:/Users/dsteinpichler/Documents/VERTRAULICH/OTHER/Handouts/UML-Compendium.docx%23_Toc401651151

UML-Glossary 71

Fig. 61: Example Deployment Diagram ... 65
Fig. 62: Example Time Diagram ... 67
Fig. 63: Composition Structure Diagram and equivalent Class Diagram ... 67
Fig. 64: Example of Object Diagram (right) and corresponding Class Diagram 68

72 UML-Glossary

Recommended Additional Literature

UML Distilled. Third Edition
by Martin Fowler

The classic UML book.
Short, clear presentation of the most important features in UML

<todo> Oliver Alt
SysML (falls auch
engl)

Real Time UML
by Bruce Powel Douglass

The classic on embedded and real-time developers!

UML@Work - 3rd Edition
by Martin Hitz, Gerti Kappel, Elisabeth Kapsammer, Werner Retschitzegger

For UML beginners as well as advanced UML users. Language concepts and
notation of diagram types for structure and behavioural modelling based
on a continuous example.

UML-Glossary 73

Index
Abstract Class 35
Abstraction relationship 43
Activity 19
Activity Diagram 19
Activity Final 26
Actor 11
Aggregation 40
Association 37
Association Class 39
association node 39
Asynchronous Messages 53
Attribute 37
Available Interface 44
Booch 6
call 42
Call Behaviour Action 22
Calling an Activity by an Action 23
Cardinality 38
Class 35
Class Diagram 35
Collaboration Diagram 57
Communication Diagram 57
Component 64
Component Diagram 62
composite Element 23
Composite Structure Diagram 67
Composition 40
create 42
Creation of Objects 54
dependency 42
Deployment Diagram 64
derive 42
destroying an object 54
Diagram Implementation 9
element linking (composite) 23
ExecutionOccurence 52
Extend Relationship 14
Flow Final 26
Found Message 53
Generalisation 15, 41
Harel, David 31
Include 50
Include Relationship 13
instantiate 42
Interaction Diagrams 52
Interaction Overview Diagram 61
Interface 43
Introduction to UML 5
Jacobson 6
JoinSpec 22
Junction 21
Lifeline 52, 54

linked (composite) element 23
Lost Message 53
Message 52
Message Types 52
Method 37
Multiplicity 38
n-ary Association 39
Nesting 50
Node 64
Object 36
Object Activity 54
Object Creation 54
Object Destruction 54
Object Diagram 68
Operation 37
Package Diagram 49
Parameterized Classe 36
Partition 23
permission 43
permit 42
provided interface 44
Realization relationship 43
realize 42
refine 42
Relationship 12
requested interface 44
Responsibility Zones 23
Return of a Method 54
Rumbaugh 6
Scope 35
Sequence Diagram 52
Specialisation 15, 41
State 32
State Machine Diagram 31
Stereotype 36
structuring elements 23
Subactivities 25
Substitution relationship 43
Swimlane 23
Swimlanes 23
Synchronisation 22
Synchronisation with JoinSpec 22
Synchronous Message 53
Timing Diagram 67
trace 43
Transition 32
UML Diagram Types 8
use 43
Use Case 12
Use Case diagrams 11

